Spaces:
Build error
Build error
File size: 19,738 Bytes
452b173 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
import numpy as np
import torch
import torch.nn as nn
import math
def quantize(x, scale, zero, maxq):
if maxq < 0:
return (x > scale / 2).float() * scale + (x < zero / 2).float() * zero
q = torch.clamp(torch.round(x / scale) + zero, 0, maxq)
return scale * (q - zero)
class Quantizer(nn.Module):
def __init__(self, shape=1):
super(Quantizer, self).__init__()
self.register_buffer('maxq', torch.tensor(0))
self.register_buffer('scale', torch.zeros(shape))
self.register_buffer('zero', torch.zeros(shape))
def configure(
self,
bits, perchannel=False, sym=True,
mse=False, norm=2.4, grid=100, maxshrink=.8,
trits=False
):
self.maxq = torch.tensor(2 ** bits - 1)
self.perchannel = perchannel
self.sym = sym
self.mse = mse
self.norm = norm
self.grid = grid
self.maxshrink = maxshrink
if trits:
self.maxq = torch.tensor(-1)
def find_params(self, x, weight=False):
dev = x.device
self.maxq = self.maxq.to(dev)
shape = x.shape
if self.perchannel:
if weight:
x = x.flatten(1)
else:
if len(shape) == 4:
x = x.permute([1, 0, 2, 3])
x = x.flatten(1)
if len(shape) == 3:
x = x.reshape((-1, shape[-1])).t()
if len(shape) == 2:
x = x.t()
else:
x = x.flatten().unsqueeze(0)
tmp = torch.zeros(x.shape[0], device=dev)
xmin = torch.minimum(x.min(1)[0], tmp)
xmax = torch.maximum(x.max(1)[0], tmp)
if self.sym:
xmax = torch.maximum(torch.abs(xmin), xmax)
tmp = xmin < 0
if torch.any(tmp):
xmin[tmp] = -xmax[tmp]
tmp = (xmin == 0) & (xmax == 0)
xmin[tmp] = -1
xmax[tmp] = +1
if self.maxq < 0:
self.scale = xmax
self.zero = xmin
else:
self.scale = (xmax - xmin) / self.maxq
if self.sym:
self.zero = torch.full_like(self.scale, (self.maxq + 1) / 2)
else:
self.zero = torch.round(-xmin / self.scale)
if self.mse:
best = torch.full([x.shape[0]], float('inf'), device=dev)
for i in range(int(self.maxshrink * self.grid)):
p = 1 - i / self.grid
xmin1 = p * xmin
xmax1 = p * xmax
scale1 = (xmax1 - xmin1) / self.maxq
zero1 = torch.round(-xmin1 / scale1) if not self.sym else self.zero
q = quantize(x, scale1.unsqueeze(1), zero1.unsqueeze(1), self.maxq)
q -= x
q.abs_()
q.pow_(self.norm)
err = torch.sum(q, 1)
tmp = err < best
if torch.any(tmp):
best[tmp] = err[tmp]
self.scale[tmp] = scale1[tmp]
self.zero[tmp] = zero1[tmp]
if not self.perchannel:
if weight:
tmp = shape[0]
else:
tmp = shape[1] if len(shape) != 3 else shape[2]
self.scale = self.scale.repeat(tmp)
self.zero = self.zero.repeat(tmp)
if weight:
shape = [-1] + [1] * (len(shape) - 1)
self.scale = self.scale.reshape(shape)
self.zero = self.zero.reshape(shape)
return
if len(shape) == 4:
self.scale = self.scale.reshape((1, -1, 1, 1))
self.zero = self.zero.reshape((1, -1, 1, 1))
if len(shape) == 3:
self.scale = self.scale.reshape((1, 1, -1))
self.zero = self.zero.reshape((1, 1, -1))
if len(shape) == 2:
self.scale = self.scale.unsqueeze(0)
self.zero = self.zero.unsqueeze(0)
def quantize(self, x):
if self.ready():
return quantize(x, self.scale, self.zero, self.maxq)
return x
def enabled(self):
return self.maxq > 0
def ready(self):
return torch.all(self.scale != 0)
try:
import quant_cuda
except:
print('CUDA extension not installed.')
# Assumes layer is perfectly divisible into 256 * 256 blocks
class QuantLinear(nn.Module):
def __init__(self, bits, groupsize, infeatures, outfeatures, faster=False, kernel_switch_threshold=128):
super().__init__()
if bits not in [2,3,4,8]:
raise NotImplementedError("Only 2,3,4,8 bits are supported.")
self.infeatures = infeatures
self.outfeatures = outfeatures
self.bits = bits
if groupsize != -1 and groupsize < 32 and groupsize != int(math.pow(2,int(math.log2(groupsize)))):
raise NotImplementedError("groupsize supports powers of 2 greater than 32. (e.g. : 32,64,128,etc)")
groupsize = groupsize if groupsize != -1 else infeatures
self.groupsize = groupsize
self.register_buffer('qzeros', torch.zeros((math.ceil(infeatures/groupsize),outfeatures // 256 * (bits * 8)), dtype=torch.int))
self.register_buffer('scales', torch.zeros((math.ceil(infeatures/groupsize),outfeatures)))
self.register_buffer('bias', torch.zeros(outfeatures))
self.register_buffer(
'qweight', torch.zeros((infeatures // 32 * bits, outfeatures), dtype=torch.int)
)
self.half_indim = self.infeatures // 2
self._initialized_quant_state = False
self.faster = faster
# kernel_switch_threshold is the cutoff input size after which matmul
# is performed by unpacking the weights and using torch.matmul
self.kernel_switch_threshold = kernel_switch_threshold
if isinstance(self.kernel_switch_threshold, bool):
self.kernel_switch_threshold = 128 if self.kernel_switch_threshold else None
if not self.kernel_switch_threshold is None:
# Buffers for bit shifting weight unpacking
if self.bits == 2:
self.register_buffer(
'wf1',
torch.tensor([0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30], dtype=torch.int32).unsqueeze(0).unsqueeze(2),
persistent=False
)
self.register_buffer(
'wf2',
torch.tensor([0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30], dtype=torch.int32).unsqueeze(0).unsqueeze(0),
persistent=False
)
elif self.bits == 3:
self.register_buffer('wf1', torch.tensor([
[0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 0],
[0, 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31],
[0, 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 0],
], dtype=torch.int32).reshape(1,3,12,1), persistent=False)
self.register_buffer('wf2', torch.tensor([
[0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 0],
[0, 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31],
[0, 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 0],
], dtype=torch.int32).reshape(1,1,3,12), persistent=False)
elif self.bits == 4:
self.register_buffer(
'wf1',
torch.tensor([0, 4, 8, 12, 16, 20, 24, 28], dtype=torch.int32).unsqueeze(0).unsqueeze(2),
persistent=False
)
self.register_buffer(
'wf2',
torch.tensor([0, 4, 8, 12, 16, 20, 24, 28], dtype=torch.int32).unsqueeze(0).unsqueeze(0),
persistent=False
)
elif self.bits == 8:
self.register_buffer(
'wf1',
torch.tensor([0, 8, 16, 24], dtype=torch.int32).unsqueeze(0).unsqueeze(2),
persistent=False
)
self.register_buffer(
'wf2',
torch.tensor([0, 8, 16, 24], dtype=torch.int32).unsqueeze(0).unsqueeze(0),
persistent=False
)
def pack(self, linear, scales, zeros):
scales = scales.t().contiguous()
zeros = zeros.t().contiguous()
scale_zeros = zeros * scales
self.scales = scales.clone()
if linear.bias is not None:
self.bias = linear.bias.clone()
intweight = []
for idx in range(self.infeatures):
g_idx = idx // self.groupsize
intweight.append(torch.round((linear.weight.data[:,idx] + scale_zeros[g_idx]) / self.scales[g_idx]).to(torch.int)[:,None])
intweight = torch.cat(intweight,dim=1)
intweight = intweight.t().contiguous()
intweight = intweight.numpy().astype(np.uint32)
qweight = np.zeros(
(intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32
)
i = 0
row = 0
while row < qweight.shape[0]:
if self.bits in [2,4,8]:
for j in range(i, i + (32//self.bits)):
qweight[row] |= intweight[j] << (self.bits * (j - i))
i += 32//self.bits
row += 1
elif self.bits == 3:
for j in range(i, i + 10):
qweight[row] |= intweight[j] << (3 * (j - i))
i += 10
qweight[row] |= intweight[i] << 30
row += 1
qweight[row] |= (intweight[i] >> 2) & 1
i += 1
for j in range(i, i + 10):
qweight[row] |= intweight[j] << (3 * (j - i) + 1)
i += 10
qweight[row] |= intweight[i] << 31
row += 1
qweight[row] |= (intweight[i] >> 1) & 0x3
i += 1
for j in range(i, i + 10):
qweight[row] |= intweight[j] << (3 * (j - i) + 2)
i += 10
row += 1
else:
raise NotImplementedError("Only 2,3,4,8 bits are supported.")
qweight = qweight.astype(np.int32)
self.qweight = torch.from_numpy(qweight)
zeros -= 1;
zeros = zeros.numpy().astype(np.uint32)
qzeros = np.zeros((zeros.shape[0], zeros.shape[1] // 256 * (self.bits * 8)), dtype=np.uint32)
i = 0
col = 0
while col < qzeros.shape[1]:
if self.bits in [2,4,8]:
for j in range(i, i + (32//self.bits)):
qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i))
i += 32//self.bits
col += 1
elif self.bits == 3:
for j in range(i, i + 10):
qzeros[:, col] |= zeros[:, j] << (3 * (j - i))
i += 10
qzeros[:, col] |= zeros[:, i] << 30
col += 1
qzeros[:, col] |= (zeros[:, i] >> 2) & 1
i += 1
for j in range(i, i + 10):
qzeros[:, col] |= zeros[:, j] << (3 * (j - i) + 1)
i += 10
qzeros[:, col] |= zeros[:, i] << 31
col += 1
qzeros[:, col] |= (zeros[:, i] >> 1) & 0x3
i += 1
for j in range(i, i + 10):
qzeros[:, col] |= zeros[:, j] << (3 * (j - i) + 2)
i += 10
col += 1
else:
raise NotImplementedError("Only 2,3,4,8 bits are supported.")
qzeros = qzeros.astype(np.int32)
self.qzeros = torch.from_numpy(qzeros)
def forward(self, x):
if not self._initialized_quant_state:
# Do we even have a bias? Check for at least one non-zero element.
if self.bias is not None and bool(torch.any(self.bias != 0)):
# Then make sure it's the right type.
self.bias.data = self.bias.data.to(torch.float32)
else:
self.bias = None
if not self.kernel_switch_threshold is None and (x.shape[0] * x.shape[1]) >= self.kernel_switch_threshold:
if self.bits == 2:
# Unpack 2bit weights
weight = torch.bitwise_right_shift(torch.unsqueeze(self.qweight, 1).expand(-1, 16, -1), self.wf1).to(torch.int8)
torch.bitwise_and(weight, 0x00000003, out=weight)
weight = weight.reshape(-1, self.groupsize, weight.shape[2])
zeros = torch.bitwise_right_shift(torch.unsqueeze(self.qzeros, 2).expand(-1, -1, 16), self.wf2).to(torch.int8)
torch.bitwise_and(zeros, 0x00000003, out=zeros)
zeros = zeros + 1
zeros = zeros.reshape(-1, 1, zeros.shape[1] * zeros.shape[2])
scales = self.scales
scales = scales.reshape(-1, 1, scales.shape[-1])
weights = (scales * (weight - zeros))
weights = weights.reshape(weights.shape[0] * weight.shape[1], weights.shape[2])
x = torch.matmul(x, weights.to(x.dtype))
x = x + self.bias if self.bias is not None else x
return x
elif self.bits == 3:
# Unpack 3bit weights
weight = self.qweight.reshape(self.qweight.shape[0]//3, 3, 1, self.qweight.shape[1]).expand(-1, -1, 12, -1)
weight = (weight >> self.wf1)&0x7
weight[:,0,10] = (weight[:,0,10]&0x3) | ((weight[:,1,0] << 2)&0x4)
weight[:,1,11] = (weight[:,1,11]&0x1) | ((weight[:,2,0] << 1)&0x6)
weight = weight & 0x7
weight = torch.cat([weight[:,0,:11], weight[:,1,1:12], weight[:,2,1:11]], dim=1)
weight = weight.reshape(-1, self.groupsize, weight.shape[2])
zeros = self.qzeros.reshape(self.qzeros.shape[0], self.qzeros.shape[1]//3, 3, 1).expand(-1, -1, -1, 12)
zeros = (zeros >> self.wf2)
zeros[:,:,0,10] = (zeros[:,:,0,10]&0x3) | ((zeros[:,:,1,0] << 2)&0x4)
zeros[:,:,1,11] = (zeros[:,:,1,11]&0x1) | ((zeros[:,:,2,0] << 1)&0x6)
zeros = zeros & 0x7
zeros = torch.cat([zeros[:,:,0,:11], zeros[:,:,1,1:12], zeros[:,:,2,1:11]], dim=2)
zeros = zeros.reshape(-1, 1, zeros.shape[1] * zeros.shape[2])
zeros = zeros + 1
scales = self.scales
scales = scales.reshape(-1, 1, scales.shape[-1])
weights = (scales * (weight - zeros))
weights = weights.reshape(weights.shape[0] * weight.shape[1], weights.shape[2])
x = torch.matmul(x, weights.to(x.dtype))
x = x + self.bias if self.bias is not None else x
return x
elif self.bits == 4:
# Unpack 4bit weights
weight = torch.bitwise_right_shift(torch.unsqueeze(self.qweight, 1).expand(-1, 8, -1), self.wf1).to(torch.int8)
torch.bitwise_and(weight, 0x0000000F, out=weight)
weight = weight.reshape(-1, self.groupsize, weight.shape[2])
zeros = torch.bitwise_right_shift(torch.unsqueeze(self.qzeros, 2).expand(-1, -1, 8), self.wf2).to(torch.int8)
torch.bitwise_and(zeros, 0x0000000F, out=zeros)
zeros = zeros + 1
zeros = zeros.reshape(-1, 1, zeros.shape[1] * zeros.shape[2])
scales = self.scales
scales = scales.reshape(-1, 1, scales.shape[-1])
weights = (scales * (weight - zeros))
weights = weights.reshape(weights.shape[0] * weight.shape[1], weights.shape[2])
x = torch.matmul(x, weights.to(x.dtype))
x = x + self.bias if self.bias is not None else x
return x
elif self.bits == 8:
# Unpack 8bit weights
weight = torch.bitwise_right_shift(torch.unsqueeze(self.qweight, 1).expand(-1, 4, -1), self.wf1).to(torch.int8)
torch.bitwise_and(weight, 0x000000FF, out=weight)
weight = weight.reshape(-1, self.groupsize, weight.shape[2])
zeros = torch.bitwise_right_shift(torch.unsqueeze(self.qzeros, 2).expand(-1, -1, 4), self.wf2).to(torch.int8)
torch.bitwise_and(zeros, 0x000000FF, out=zeros)
zeros = zeros + 1
zeros = zeros.reshape(-1, 1, zeros.shape[1] * zeros.shape[2])
scales = self.scales
scales = scales.reshape(-1, 1, scales.shape[-1])
weights = (scales * (weight - zeros))
weights = weights.reshape(weights.shape[0] * weight.shape[1], weights.shape[2])
x = torch.matmul(x, weights.to(x.dtype))
x = x + self.bias if self.bias is not None else x
return x
else:
raise NotImplementedError("Only 2,3,4,8 bits are supported.")
outshape = list(x.shape)
outshape[-1] = self.outfeatures
x = x.reshape(-1, x.shape[-1])
if self.bias is None:
y = torch.zeros(x.shape[0], outshape[-1], dtype=torch.float32, device=x.device)
else:
y = self.bias.clone().repeat(x.shape[0], 1)
output_dtype = x.dtype
if self.faster:
x = x.half()
if self.bits == 2:
quant_cuda.vecquant2matmul_faster(x, self.qweight, y, self.scales, self.qzeros, self.groupsize, self.half_indim)
elif self.bits == 3:
quant_cuda.vecquant3matmul_faster(x, self.qweight, y, self.scales, self.qzeros, self.groupsize, self.half_indim)
elif self.bits == 4:
quant_cuda.vecquant4matmul_faster(x, self.qweight, y, self.scales, self.qzeros, self.groupsize, self.half_indim)
else:
raise NotImplementedError("Only 2,3,4 bits are supported.")
else:
x = x.float()
if self.bits == 2:
quant_cuda.vecquant2matmul(x, self.qweight, y, self.scales, self.qzeros, self.groupsize)
elif self.bits == 3:
quant_cuda.vecquant3matmul(x, self.qweight, y, self.scales, self.qzeros, self.groupsize)
elif self.bits == 4:
quant_cuda.vecquant4matmul(x, self.qweight, y, self.scales, self.qzeros, self.groupsize)
elif self.bits == 8:
quant_cuda.vecquant8matmul(x, self.qweight, y, self.scales, self.qzeros, self.groupsize)
else:
raise NotImplementedError("Only 2,3,4,8 bits are supported.")
y = y.to(output_dtype)
return y.reshape(outshape)
def make_quant(module, names, bits, groupsize, faster=False, name='', kernel_switch_threshold=128):
if isinstance(module, QuantLinear):
return
for attr in dir(module):
tmp = getattr(module, attr)
name1 = name + '.' + attr if name != '' else attr
if name1 in names:
delattr(module, attr)
setattr(
module, attr, QuantLinear(bits, groupsize, tmp.in_features, tmp.out_features, faster=faster, kernel_switch_threshold=kernel_switch_threshold)
)
for name1, child in module.named_children():
make_quant(child, names, bits, groupsize, faster, name + '.' + name1 if name != '' else name1, kernel_switch_threshold=kernel_switch_threshold)
|