|
import streamlit as st |
|
from llama_index.core.agent import ReActAgent |
|
from llama_index.llms.groq import Groq |
|
from llama_index.core.tools import FunctionTool |
|
from llama_index.tools.tavily_research.base import TavilyToolSpec |
|
import os |
|
import json |
|
import pandas as pd |
|
from datetime import datetime |
|
from dotenv import load_dotenv |
|
import time |
|
import base64 |
|
import plotly.graph_objects as go |
|
import re |
|
from io import StringIO |
|
import sys |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
MODEL_LIMITS = { |
|
"allam-2-7b": { |
|
"rpm": 30, |
|
"rpd": 7000, |
|
"tpm": 6000, |
|
"tpd": "No limit" |
|
}, |
|
"deepseek-r1-distill-llama-70b": { |
|
"rpm": 30, |
|
"rpd": 1000, |
|
"tpm": 6000, |
|
"tpd": "No limit" |
|
}, |
|
"deepseek-r1-distill-qwen-32b": { |
|
"rpm": 30, |
|
"rpd": 1000, |
|
"tpm": 6000, |
|
"tpd": "No limit" |
|
}, |
|
"gemma2-9b-it": { |
|
"rpm": 30, |
|
"rpd": 14400, |
|
"tpm": 15000, |
|
"tpd": 500000 |
|
}, |
|
"llama-3.1-8b-instant": { |
|
"rpm": 30, |
|
"rpd": 14400, |
|
"tpm": 6000, |
|
"tpd": 500000 |
|
}, |
|
"llama-3.2-11b-vision-preview": { |
|
"rpm": 30, |
|
"rpd": 7000, |
|
"tpm": 7000, |
|
"tpd": 500000 |
|
}, |
|
"llama-3.2-1b-preview": { |
|
"rpm": 30, |
|
"rpd": 7000, |
|
"tpm": 7000, |
|
"tpd": 500000 |
|
}, |
|
"llama-3.2-3b-preview": { |
|
"rpm": 30, |
|
"rpd": 7000, |
|
"tpm": 7000, |
|
"tpd": 500000 |
|
}, |
|
"llama-3.2-90b-vision-preview": { |
|
"rpm": 15, |
|
"rpd": 3500, |
|
"tpm": 7000, |
|
"tpd": 250000 |
|
}, |
|
"llama-3.3-70b-specdec": { |
|
"rpm": 30, |
|
"rpd": 1000, |
|
"tpm": 6000, |
|
"tpd": 100000 |
|
}, |
|
"llama-3.3-70b-versatile": { |
|
"rpm": 30, |
|
"rpd": 1000, |
|
"tpm": 6000, |
|
"tpd": 100000 |
|
}, |
|
"llama-guard-3-8b": { |
|
"rpm": 30, |
|
"rpd": 14400, |
|
"tpm": 15000, |
|
"tpd": 500000 |
|
}, |
|
"llama3-70b-8192": { |
|
"rpm": 30, |
|
"rpd": 14400, |
|
"tpm": 6000, |
|
"tpd": 500000 |
|
}, |
|
"llama3-8b-8192": { |
|
"rpm": 30, |
|
"rpd": 14400, |
|
"tpm": 6000, |
|
"tpd": 500000 |
|
}, |
|
"mistral-saba-24b": { |
|
"rpm": 30, |
|
"rpd": 1000, |
|
"tpm": 6000, |
|
"tpd": 500000 |
|
}, |
|
"qwen-2.5-32b": { |
|
"rpm": 30, |
|
"rpd": 1000, |
|
"tpm": 6000, |
|
"tpd": "No limit" |
|
}, |
|
"qwen-2.5-coder-32b": { |
|
"rpm": 30, |
|
"rpd": 1000, |
|
"tpm": 6000, |
|
"tpd": "No limit" |
|
}, |
|
"qwen-qwq-32b": { |
|
"rpm": 30, |
|
"rpd": 1000, |
|
"tpm": 6000, |
|
"tpd": "No limit" |
|
}, |
|
"claude-3-5-sonnet-20240620": { |
|
"rpm": 30, |
|
"rpd": 14400, |
|
"tpm": 15000, |
|
"tpd": 500000 |
|
}, |
|
"mixtral-8x7b-32768": { |
|
"rpm": 30, |
|
"rpd": 14400, |
|
"tpm": 15000, |
|
"tpd": 500000 |
|
} |
|
} |
|
|
|
|
|
if 'conversation_history' not in st.session_state: |
|
st.session_state.conversation_history = [] |
|
if 'api_key' not in st.session_state: |
|
st.session_state.api_key = "" |
|
if 'current_response' not in st.session_state: |
|
st.session_state.current_response = None |
|
if 'feedback_data' not in st.session_state: |
|
st.session_state.feedback_data = [] |
|
if 'current_sources' not in st.session_state: |
|
st.session_state.current_sources = [] |
|
if 'thinking_process' not in st.session_state: |
|
st.session_state.thinking_process = "" |
|
|
|
|
|
st.markdown(""" |
|
<style> |
|
.main-header { |
|
font-size: 2.5rem; |
|
color: #4527A0; |
|
text-align: center; |
|
margin-bottom: 1rem; |
|
font-weight: bold; |
|
} |
|
.sub-header { |
|
font-size: 1.5rem; |
|
color: #5E35B1; |
|
margin-bottom: 0.5rem; |
|
} |
|
.team-header { |
|
font-size: 1.2rem; |
|
color: #673AB7; |
|
font-weight: bold; |
|
margin-top: 1rem; |
|
} |
|
.team-member { |
|
font-size: 1rem; |
|
margin-left: 1rem; |
|
color: #7E57C2; |
|
} |
|
.api-section { |
|
background-color: #EDE7F6; |
|
padding: 1rem; |
|
border-radius: 10px; |
|
margin-bottom: 1rem; |
|
} |
|
.response-container { |
|
background-color: #F3E5F5; |
|
padding: 1rem; |
|
border-radius: 5px; |
|
margin-top: 1rem; |
|
} |
|
.footer { |
|
text-align: center; |
|
margin-top: 2rem; |
|
font-size: 0.8rem; |
|
color: #9575CD; |
|
} |
|
.error-msg { |
|
color: #D32F2F; |
|
font-weight: bold; |
|
} |
|
.success-msg { |
|
color: #388E3C; |
|
font-weight: bold; |
|
} |
|
.history-item { |
|
padding: 0.5rem; |
|
border-radius: 5px; |
|
margin-bottom: 0.5rem; |
|
} |
|
.query-text { |
|
font-weight: bold; |
|
color: #303F9F; |
|
} |
|
.response-text { |
|
color: #1A237E; |
|
} |
|
.feedback-container { |
|
background-color: #E8EAF6; |
|
padding: 1rem; |
|
border-radius: 5px; |
|
margin-top: 1rem; |
|
} |
|
.feedback-btn { |
|
margin-right: 0.5rem; |
|
} |
|
.star-rating { |
|
display: flex; |
|
justify-content: center; |
|
margin-top: 0.5rem; |
|
} |
|
.analytics-container { |
|
background-color: #E1F5FE; |
|
padding: 1rem; |
|
border-radius: 5px; |
|
margin-top: 1rem; |
|
} |
|
.sources-container { |
|
background-color: #E0F7FA; |
|
padding: 1rem; |
|
border-radius: 5px; |
|
margin-top: 1rem; |
|
} |
|
.source-item { |
|
background-color: #B2EBF2; |
|
padding: 0.5rem; |
|
border-radius: 5px; |
|
margin-bottom: 0.5rem; |
|
} |
|
.source-url { |
|
font-style: italic; |
|
color: #0277BD; |
|
word-break: break-all; |
|
} |
|
.thinking-container { |
|
background-color: #FFF8E1; |
|
padding: 1rem; |
|
border-radius: 5px; |
|
margin-top: 1rem; |
|
font-family: monospace; |
|
white-space: pre-wrap; |
|
} |
|
.thinking-step { |
|
padding: 0.5rem; |
|
margin-bottom: 0.5rem; |
|
border-left: 3px solid #FFB300; |
|
} |
|
.website-link { |
|
display: inline-block; |
|
margin: 0.3rem; |
|
padding: 0.4rem 0.8rem; |
|
background-color: #E3F2FD; |
|
color: #1565C0; |
|
border-radius: 20px; |
|
font-size: 0.9rem; |
|
text-decoration: none; |
|
transition: background-color 0.3s; |
|
} |
|
.website-link:hover { |
|
background-color: #BBDEFB; |
|
} |
|
.link-container { |
|
margin: 1rem 0; |
|
padding: 0.5rem; |
|
background-color: #F5F5F5; |
|
border-radius: 5px; |
|
display: flex; |
|
flex-wrap: wrap; |
|
} |
|
.model-limits-container { |
|
background-color: #E8F5E9; |
|
padding: 1rem; |
|
border-radius: 5px; |
|
margin-top: 0.5rem; |
|
margin-bottom: 1rem; |
|
} |
|
.limit-pill { |
|
display: inline-block; |
|
margin: 0.2rem; |
|
padding: 0.3rem 0.6rem; |
|
background-color: #C8E6C9; |
|
color: #2E7D32; |
|
border-radius: 20px; |
|
font-size: 0.8rem; |
|
} |
|
.limit-table { |
|
width: 100%; |
|
border-collapse: collapse; |
|
margin-top: 0.5rem; |
|
font-size: 0.9rem; |
|
} |
|
.limit-table th, .limit-table td { |
|
padding: 0.4rem; |
|
text-align: left; |
|
border-bottom: 1px solid #E0E0E0; |
|
} |
|
.limit-table th { |
|
background-color: #E8F5E9; |
|
color: #2E7D32; |
|
font-weight: bold; |
|
} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
st.markdown('<div class="main-header">TechMatrix AI Web Search Agent</div>', unsafe_allow_html=True) |
|
st.markdown(''' |
|
This intelligent agent uses state-of-the-art LLM technology to search the web and provide comprehensive answers to your questions. |
|
Simply enter your query, and let our AI handle the rest! |
|
''') |
|
|
|
|
|
with st.sidebar: |
|
st.markdown('<div class="team-header">TechMatrix Solvers</div>', unsafe_allow_html=True) |
|
|
|
st.markdown('<div class="team-member">π Abhay Gupta (Team Leader)</div>', unsafe_allow_html=True) |
|
st.markdown('[LinkedIn Profile](https://www.linkedin.com/in/abhay-gupta-197b17264/)') |
|
|
|
st.markdown('<div class="team-member">π§ Mayank Das Bairagi</div>', unsafe_allow_html=True) |
|
st.markdown('[LinkedIn Profile](https://www.linkedin.com/in/mayank-das-bairagi-18639525a/)') |
|
|
|
st.markdown('<div class="team-member">π» Kripanshu Gupta</div>', unsafe_allow_html=True) |
|
st.markdown('[LinkedIn Profile](https://www.linkedin.com/in/kripanshu-gupta-a66349261/)') |
|
|
|
st.markdown('<div class="team-member">π Bhumika Patel</div>', unsafe_allow_html=True) |
|
st.markdown('[LinkedIn Profile](https://www.linkedin.com/in/bhumika-patel-ml/)') |
|
|
|
st.markdown('---') |
|
|
|
|
|
st.markdown('<div class="sub-header">Advanced Settings</div>', unsafe_allow_html=True) |
|
|
|
|
|
available_models = [ |
|
'gemma2-9b-it', |
|
'llama3-8b-8192', |
|
'mixtral-8x7b-32768', |
|
'llama3-70b-8192', |
|
'claude-3-5-sonnet-20240620', |
|
'llama-3.1-8b-instant', |
|
'llama-3.2-3b-preview', |
|
'llama-3.3-70b-versatile', |
|
'qwen-2.5-32b', |
|
'mistral-saba-24b' |
|
] |
|
|
|
model_option = st.selectbox( |
|
'LLM Model', |
|
available_models, |
|
index=0, |
|
help="Select from available Groq models" |
|
) |
|
|
|
|
|
if model_option in MODEL_LIMITS: |
|
limits = MODEL_LIMITS[model_option] |
|
st.markdown('<div class="model-limits-container">', unsafe_allow_html=True) |
|
st.markdown(f"#### Rate Limits for {model_option}") |
|
|
|
|
|
st.markdown(""" |
|
<table class="limit-table"> |
|
<tr> |
|
<th>Limit Type</th> |
|
<th>Value</th> |
|
</tr> |
|
<tr> |
|
<td>Requests per Minute</td> |
|
<td>{rpm}</td> |
|
</tr> |
|
<tr> |
|
<td>Requests per Day</td> |
|
<td>{rpd}</td> |
|
</tr> |
|
<tr> |
|
<td>Tokens per Minute</td> |
|
<td>{tpm}</td> |
|
</tr> |
|
<tr> |
|
<td>Tokens per Day</td> |
|
<td>{tpd}</td> |
|
</tr> |
|
</table> |
|
""".format( |
|
rpm=limits['rpm'], |
|
rpd=limits['rpd'], |
|
tpm=limits['tpm'], |
|
tpd=limits['tpd'] |
|
), unsafe_allow_html=True) |
|
|
|
st.markdown('</div>', unsafe_allow_html=True) |
|
|
|
search_depth = st.slider('Search Depth', min_value=1, max_value=8, value=5, |
|
help="Higher values will search more thoroughly but take longer") |
|
|
|
show_thinking = st.checkbox('Show AI Thinking Process', value=True, |
|
help="Display the step-by-step reasoning process of the AI") |
|
|
|
|
|
if st.button('Clear Conversation History'): |
|
st.session_state.conversation_history = [] |
|
st.success('Conversation history cleared!') |
|
|
|
|
|
if st.session_state.feedback_data: |
|
st.markdown('---') |
|
st.markdown('<div class="sub-header">Response Analytics</div>', unsafe_allow_html=True) |
|
|
|
|
|
ratings = [item['rating'] for item in st.session_state.feedback_data if 'rating' in item] |
|
avg_rating = sum(ratings) / len(ratings) if ratings else 0 |
|
|
|
|
|
fig = go.Figure(go.Indicator( |
|
mode="gauge+number", |
|
value=avg_rating, |
|
title={'text': "Average Rating"}, |
|
domain={'x': [0, 1], 'y': [0, 1]}, |
|
gauge={ |
|
'axis': {'range': [0, 5]}, |
|
'bar': {'color': "#6200EA"}, |
|
'steps': [ |
|
{'range': [0, 2], 'color': "#FFD0D0"}, |
|
{'range': [2, 3.5], 'color': "#FFFFCC"}, |
|
{'range': [3.5, 5], 'color': "#D0FFD0"} |
|
] |
|
} |
|
)) |
|
|
|
fig.update_layout(height=250, margin=dict(l=20, r=20, t=30, b=20)) |
|
st.plotly_chart(fig, use_container_width=True) |
|
|
|
|
|
feedback_counts = {"π Helpful": 0, "π Not Helpful": 0} |
|
for item in st.session_state.feedback_data: |
|
if 'feedback' in item: |
|
if item['feedback'] == 'helpful': |
|
feedback_counts["π Helpful"] += 1 |
|
elif item['feedback'] == 'not_helpful': |
|
feedback_counts["π Not Helpful"] += 1 |
|
|
|
st.markdown("### Feedback Summary") |
|
for key, value in feedback_counts.items(): |
|
st.markdown(f"**{key}:** {value}") |
|
|
|
|
|
st.markdown('<div class="sub-header">API Credentials</div>', unsafe_allow_html=True) |
|
with st.expander("Configure API Keys"): |
|
st.markdown('<div class="api-section">', unsafe_allow_html=True) |
|
api_key = st.text_input("Enter your Groq API key:", |
|
type="password", |
|
value=st.session_state.api_key, |
|
help="Get your API key from https://console.groq.com/keys") |
|
|
|
tavily_key = st.text_input("Enter your Tavily API key (optional):", |
|
type="password", |
|
help="Get your Tavily API key from https://tavily.com/#api") |
|
|
|
if api_key: |
|
st.session_state.api_key = api_key |
|
os.environ['GROQ_API_KEY'] = api_key |
|
|
|
if tavily_key: |
|
os.environ['TAVILY_API_KEY'] = tavily_key |
|
st.markdown('</div>', unsafe_allow_html=True) |
|
|
|
|
|
def get_download_link(text, filename, link_text): |
|
b64 = base64.b64encode(text.encode()).decode() |
|
href = f'<a href="data:file/txt;base64,{b64}" download="{filename}">{link_text}</a>' |
|
return href |
|
|
|
|
|
def submit_feedback(feedback_type, query, response): |
|
feedback_entry = { |
|
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), |
|
"query": query, |
|
"response": response, |
|
"feedback": feedback_type |
|
} |
|
st.session_state.feedback_data.append(feedback_entry) |
|
return True |
|
|
|
|
|
def submit_rating(rating, query, response): |
|
|
|
for entry in st.session_state.feedback_data: |
|
if entry.get('query') == query and entry.get('response') == response: |
|
entry['rating'] = rating |
|
return True |
|
|
|
|
|
feedback_entry = { |
|
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), |
|
"query": query, |
|
"response": response, |
|
"rating": rating |
|
} |
|
st.session_state.feedback_data.append(feedback_entry) |
|
return True |
|
|
|
|
|
def extract_urls(text): |
|
url_pattern = r'https?://(?:[-\w.]|(?:%[\da-fA-F]{2}))+' |
|
return re.findall(url_pattern, text) |
|
|
|
|
|
class ThinkingCapture: |
|
def __init__(self): |
|
self.thinking_steps = [] |
|
|
|
def on_agent_step(self, agent_step): |
|
|
|
if hasattr(agent_step, 'thought') and agent_step.thought: |
|
self.thinking_steps.append(f"Thought: {agent_step.thought}") |
|
if hasattr(agent_step, 'action') and agent_step.action: |
|
self.thinking_steps.append(f"Action: {agent_step.action}") |
|
if hasattr(agent_step, 'observation') and agent_step.observation: |
|
self.thinking_steps.append(f"Observation: {agent_step.observation}") |
|
return agent_step |
|
|
|
def get_thinking_process(self): |
|
return "\n".join(self.thinking_steps) |
|
|
|
|
|
try: |
|
if 'TAVILY_API_KEY' in os.environ and os.environ['TAVILY_API_KEY']: |
|
search = TavilyToolSpec(api_key=os.environ['TAVILY_API_KEY']) |
|
else: |
|
|
|
st.warning("Using default Tavily API key with limited quota. For better results, please provide your own key.") |
|
search = TavilyToolSpec(api_key=os.getenv('TAVILY_API_KEY')) |
|
|
|
def search_tool(prompt: str) -> list: |
|
"""Search the web for information about the given prompt.""" |
|
try: |
|
search_results = search.search(prompt, max_results=search_depth) |
|
|
|
sources = [] |
|
for result in search_results: |
|
if hasattr(result, 'url') and result.url: |
|
sources.append({ |
|
'title': result.title if hasattr(result, 'title') else "Unknown Source", |
|
'url': result.url |
|
}) |
|
|
|
|
|
st.session_state.current_sources = sources |
|
|
|
return [result.text for result in search_results] |
|
except Exception as e: |
|
return [f"Error during search: {str(e)}"] |
|
|
|
search_toolkit = FunctionTool.from_defaults(fn=search_tool) |
|
except Exception as e: |
|
st.error(f"Error setting up search tools: {str(e)}") |
|
search_toolkit = None |
|
|
|
|
|
query = st.text_input("What would you like to know?", |
|
placeholder="Enter your question here...", |
|
help="Ask any question, and our AI will search the web for answers") |
|
|
|
|
|
search_button = st.button("π Search") |
|
|
|
|
|
if search_button and query: |
|
|
|
if not st.session_state.api_key: |
|
st.error("Please enter your Groq API key first!") |
|
else: |
|
try: |
|
with st.spinner("π§ Searching the web and analyzing results..."): |
|
|
|
llm = Groq(model=model_option) |
|
|
|
|
|
thinking_capture = ThinkingCapture() |
|
|
|
|
|
agent = ReActAgent.from_tools( |
|
[search_toolkit], |
|
llm=llm, |
|
verbose=True, |
|
step_callbacks=[thinking_capture.on_agent_step] |
|
) |
|
|
|
|
|
st.session_state.current_sources = [] |
|
|
|
|
|
start_time = time.time() |
|
response = agent.chat(query) |
|
end_time = time.time() |
|
|
|
|
|
st.session_state.thinking_process = thinking_capture.get_thinking_process() |
|
|
|
|
|
additional_urls = extract_urls(response.response) |
|
for url in additional_urls: |
|
if not any(source['url'] == url for source in st.session_state.current_sources): |
|
st.session_state.current_sources.append({ |
|
'title': "Referenced Source", |
|
'url': url |
|
}) |
|
|
|
|
|
st.session_state.current_response = { |
|
"query": query, |
|
"response": response.response, |
|
"time": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), |
|
"duration": round(end_time - start_time, 2), |
|
"sources": st.session_state.current_sources, |
|
"thinking": st.session_state.thinking_process |
|
} |
|
|
|
|
|
st.session_state.conversation_history.append(st.session_state.current_response) |
|
|
|
|
|
st.success(f"Found results in {round(end_time - start_time, 2)} seconds!") |
|
except Exception as e: |
|
st.error(f"An error occurred: {str(e)}") |
|
|
|
|
|
if st.session_state.current_sources: |
|
st.markdown("### Source Websites:") |
|
st.markdown('<div class="link-container">', unsafe_allow_html=True) |
|
for i, source in enumerate(st.session_state.current_sources[:5]): |
|
st.markdown(f'<a class="website-link" href="{source["url"]}" target="_blank">π {source.get("title", "Source "+str(i+1))[:30]}...</a>', unsafe_allow_html=True) |
|
st.markdown('</div>', unsafe_allow_html=True) |
|
|
|
|
|
if st.session_state.current_response: |
|
with st.container(): |
|
st.markdown('<div class="response-container">', unsafe_allow_html=True) |
|
st.markdown("### Response:") |
|
st.write(st.session_state.current_response["response"]) |
|
|
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.markdown( |
|
get_download_link( |
|
st.session_state.current_response["response"], |
|
f"search_result_{datetime.now().strftime('%Y%m%d_%H%M%S')}.txt", |
|
"Download as Text" |
|
), |
|
unsafe_allow_html=True |
|
) |
|
with col2: |
|
|
|
json_data = json.dumps({ |
|
"query": st.session_state.current_response["query"], |
|
"response": st.session_state.current_response["response"], |
|
"timestamp": st.session_state.current_response["time"], |
|
"processing_time": st.session_state.current_response["duration"], |
|
"sources": st.session_state.current_sources if "sources" in st.session_state.current_response else [], |
|
"thinking_process": st.session_state.thinking_process if "thinking" in st.session_state.current_response else "" |
|
}, indent=4) |
|
|
|
st.markdown( |
|
get_download_link( |
|
json_data, |
|
f"search_result_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json", |
|
"Download as JSON with Sources" |
|
), |
|
unsafe_allow_html=True |
|
) |
|
st.markdown('</div>', unsafe_allow_html=True) |
|
|
|
|
|
if show_thinking and "thinking" in st.session_state.current_response: |
|
with st.expander("View AI Thinking Process", expanded=True): |
|
st.markdown('<div class="thinking-container">', unsafe_allow_html=True) |
|
|
|
|
|
thinking_text = st.session_state.current_response["thinking"] |
|
steps = thinking_text.split('\n') |
|
|
|
for step in steps: |
|
if step.strip(): |
|
step_type = "" |
|
if step.startswith("Thought:"): |
|
step_type = "π" |
|
elif step.startswith("Action:"): |
|
step_type = "π" |
|
elif step.startswith("Observation:"): |
|
step_type = "π" |
|
|
|
st.markdown(f'<div class="thinking-step">{step_type} {step}</div>', unsafe_allow_html=True) |
|
|
|
st.markdown('</div>', unsafe_allow_html=True) |
|
|
|
|
|
if "sources" in st.session_state.current_response and st.session_state.current_response["sources"]: |
|
with st.expander("View Detailed Sources", expanded=True): |
|
st.markdown('<div class="sources-container">', unsafe_allow_html=True) |
|
for i, source in enumerate(st.session_state.current_response["sources"]): |
|
st.markdown(f'<div class="source-item">', unsafe_allow_html=True) |
|
st.markdown(f"**Source {i+1}:** {source.get('title', 'Unknown Source')}") |
|
st.markdown(f'<div class="source-url"><a href="{source["url"]}" target="_blank">{source["url"]}</a></div>', unsafe_allow_html=True) |
|
st.markdown('</div>', unsafe_allow_html=True) |
|
st.markdown('</div>', unsafe_allow_html=True) |
|
|
|
|
|
st.markdown('<div class="feedback-container">', unsafe_allow_html=True) |
|
st.markdown("### Was this response helpful?") |
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
if st.button("π Helpful", key="helpful_btn"): |
|
if submit_feedback("helpful", st.session_state.current_response["query"], st.session_state.current_response["response"]): |
|
st.success("Thank you for your feedback!") |
|
with col2: |
|
if st.button("π Not Helpful", key="not_helpful_btn"): |
|
if submit_feedback("not_helpful", st.session_state.current_response["query"], st.session_state.current_response["response"]): |
|
st.success("Thank you for your feedback! We'll work to improve our responses.") |
|
|
|
st.markdown("### Rate this response:") |
|
rating = st.slider("", min_value=1, max_value=5, value=4, |
|
help="Rate the quality of this response from 1 (poor) to 5 (excellent)") |
|
|
|
if st.button("Submit Rating"): |
|
if submit_rating(rating, st.session_state.current_response["query"], st.session_state.current_response["response"]): |
|
st.success("Rating submitted! Thank you for helping us improve.") |
|
|
|
st.markdown('</div>', unsafe_allow_html=True) |
|
|
|
|
|
if st.session_state.conversation_history: |
|
with st.expander("View Conversation History"): |
|
for i, item in enumerate(reversed(st.session_state.conversation_history)): |
|
st.markdown(f'<div class="history-item">', unsafe_allow_html=True) |
|
st.markdown(f'<span class="query-text">Q: {item["query"]}</span> <small>({item["time"]})</small>', unsafe_allow_html=True) |
|
st.markdown(f'<div class="response-text">A: {item["response"][:200]}{"..." if len(item["response"]) > 200 else ""}</div>', unsafe_allow_html=True) |
|
st.markdown('</div>', unsafe_allow_html=True) |
|
if i < len(st.session_state.conversation_history) - 1: |
|
st.markdown('---') |
|
|
|
|
|
st.markdown(''' |
|
<div class="footer"> |
|
<p>Powered by Groq + Llama-Index + Tavily Search | Created by TechMatrix Solvers | 2025</p> |
|
</div> |
|
''', unsafe_allow_html=True) |