File size: 26,800 Bytes
b97233e 3cc8504 b97233e 3cc8504 b97233e 3cc8504 b97233e 3cc8504 b97233e 3cc8504 b97233e 3cc8504 b97233e 2ac4ccc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 |
import streamlit as st
from llama_index.core.agent import ReActAgent
from llama_index.llms.groq import Groq
from llama_index.core.tools import FunctionTool
from llama_index.tools.tavily_research.base import TavilyToolSpec
import os
import json
import pandas as pd
from datetime import datetime
from dotenv import load_dotenv
import time
import base64
import plotly.graph_objects as go
import re
from io import StringIO
import sys
# Load environment variables
load_dotenv()
# Model rate limits information
MODEL_LIMITS = {
"allam-2-7b": {
"rpm": 30,
"rpd": 7000,
"tpm": 6000,
"tpd": "No limit"
},
"deepseek-r1-distill-llama-70b": {
"rpm": 30,
"rpd": 1000,
"tpm": 6000,
"tpd": "No limit"
},
"deepseek-r1-distill-qwen-32b": {
"rpm": 30,
"rpd": 1000,
"tpm": 6000,
"tpd": "No limit"
},
"gemma2-9b-it": {
"rpm": 30,
"rpd": 14400,
"tpm": 15000,
"tpd": 500000
},
"llama-3.1-8b-instant": {
"rpm": 30,
"rpd": 14400,
"tpm": 6000,
"tpd": 500000
},
"llama-3.2-11b-vision-preview": {
"rpm": 30,
"rpd": 7000,
"tpm": 7000,
"tpd": 500000
},
"llama-3.2-1b-preview": {
"rpm": 30,
"rpd": 7000,
"tpm": 7000,
"tpd": 500000
},
"llama-3.2-3b-preview": {
"rpm": 30,
"rpd": 7000,
"tpm": 7000,
"tpd": 500000
},
"llama-3.2-90b-vision-preview": {
"rpm": 15,
"rpd": 3500,
"tpm": 7000,
"tpd": 250000
},
"llama-3.3-70b-specdec": {
"rpm": 30,
"rpd": 1000,
"tpm": 6000,
"tpd": 100000
},
"llama-3.3-70b-versatile": {
"rpm": 30,
"rpd": 1000,
"tpm": 6000,
"tpd": 100000
},
"llama-guard-3-8b": {
"rpm": 30,
"rpd": 14400,
"tpm": 15000,
"tpd": 500000
},
"llama3-70b-8192": {
"rpm": 30,
"rpd": 14400,
"tpm": 6000,
"tpd": 500000
},
"llama3-8b-8192": {
"rpm": 30,
"rpd": 14400,
"tpm": 6000,
"tpd": 500000
},
"mistral-saba-24b": {
"rpm": 30,
"rpd": 1000,
"tpm": 6000,
"tpd": 500000
},
"qwen-2.5-32b": {
"rpm": 30,
"rpd": 1000,
"tpm": 6000,
"tpd": "No limit"
},
"qwen-2.5-coder-32b": {
"rpm": 30,
"rpd": 1000,
"tpm": 6000,
"tpd": "No limit"
},
"qwen-qwq-32b": {
"rpm": 30,
"rpd": 1000,
"tpm": 6000,
"tpd": "No limit"
},
"claude-3-5-sonnet-20240620": {
"rpm": 30,
"rpd": 14400,
"tpm": 15000,
"tpd": 500000
},
"mixtral-8x7b-32768": {
"rpm": 30,
"rpd": 14400,
"tpm": 15000,
"tpd": 500000
}
}
# Initialize session state if not already done
if 'conversation_history' not in st.session_state:
st.session_state.conversation_history = []
if 'api_key' not in st.session_state:
st.session_state.api_key = ""
if 'current_response' not in st.session_state:
st.session_state.current_response = None
if 'feedback_data' not in st.session_state:
st.session_state.feedback_data = []
if 'current_sources' not in st.session_state:
st.session_state.current_sources = []
if 'thinking_process' not in st.session_state:
st.session_state.thinking_process = ""
# Custom CSS for better UI
st.markdown("""
<style>
.main-header {
font-size: 2.5rem;
color: #4527A0;
text-align: center;
margin-bottom: 1rem;
font-weight: bold;
}
.sub-header {
font-size: 1.5rem;
color: #5E35B1;
margin-bottom: 0.5rem;
}
.team-header {
font-size: 1.2rem;
color: #673AB7;
font-weight: bold;
margin-top: 1rem;
}
.team-member {
font-size: 1rem;
margin-left: 1rem;
color: #7E57C2;
}
.api-section {
background-color: #EDE7F6;
padding: 1rem;
border-radius: 10px;
margin-bottom: 1rem;
}
.response-container {
background-color: #F3E5F5;
padding: 1rem;
border-radius: 5px;
margin-top: 1rem;
}
.footer {
text-align: center;
margin-top: 2rem;
font-size: 0.8rem;
color: #9575CD;
}
.error-msg {
color: #D32F2F;
font-weight: bold;
}
.success-msg {
color: #388E3C;
font-weight: bold;
}
.history-item {
padding: 0.5rem;
border-radius: 5px;
margin-bottom: 0.5rem;
}
.query-text {
font-weight: bold;
color: #303F9F;
}
.response-text {
color: #1A237E;
}
.feedback-container {
background-color: #E8EAF6;
padding: 1rem;
border-radius: 5px;
margin-top: 1rem;
}
.feedback-btn {
margin-right: 0.5rem;
}
.star-rating {
display: flex;
justify-content: center;
margin-top: 0.5rem;
}
.analytics-container {
background-color: #E1F5FE;
padding: 1rem;
border-radius: 5px;
margin-top: 1rem;
}
.sources-container {
background-color: #E0F7FA;
padding: 1rem;
border-radius: 5px;
margin-top: 1rem;
}
.source-item {
background-color: #B2EBF2;
padding: 0.5rem;
border-radius: 5px;
margin-bottom: 0.5rem;
}
.source-url {
font-style: italic;
color: #0277BD;
word-break: break-all;
}
.thinking-container {
background-color: #FFF8E1;
padding: 1rem;
border-radius: 5px;
margin-top: 1rem;
font-family: monospace;
white-space: pre-wrap;
}
.thinking-step {
padding: 0.5rem;
margin-bottom: 0.5rem;
border-left: 3px solid #FFB300;
}
.website-link {
display: inline-block;
margin: 0.3rem;
padding: 0.4rem 0.8rem;
background-color: #E3F2FD;
color: #1565C0;
border-radius: 20px;
font-size: 0.9rem;
text-decoration: none;
transition: background-color 0.3s;
}
.website-link:hover {
background-color: #BBDEFB;
}
.link-container {
margin: 1rem 0;
padding: 0.5rem;
background-color: #F5F5F5;
border-radius: 5px;
display: flex;
flex-wrap: wrap;
}
.model-limits-container {
background-color: #E8F5E9;
padding: 1rem;
border-radius: 5px;
margin-top: 0.5rem;
margin-bottom: 1rem;
}
.limit-pill {
display: inline-block;
margin: 0.2rem;
padding: 0.3rem 0.6rem;
background-color: #C8E6C9;
color: #2E7D32;
border-radius: 20px;
font-size: 0.8rem;
}
.limit-table {
width: 100%;
border-collapse: collapse;
margin-top: 0.5rem;
font-size: 0.9rem;
}
.limit-table th, .limit-table td {
padding: 0.4rem;
text-align: left;
border-bottom: 1px solid #E0E0E0;
}
.limit-table th {
background-color: #E8F5E9;
color: #2E7D32;
font-weight: bold;
}
</style>
""", unsafe_allow_html=True)
# Main title and description
st.markdown('<div class="main-header">TechMatrix AI Web Search Agent</div>', unsafe_allow_html=True)
st.markdown('''
This intelligent agent uses state-of-the-art LLM technology to search the web and provide comprehensive answers to your questions.
Simply enter your query, and let our AI handle the rest!
''')
# Sidebar for team information
with st.sidebar:
st.markdown('<div class="team-header">TechMatrix Solvers</div>', unsafe_allow_html=True)
st.markdown('<div class="team-member">π Abhay Gupta (Team Leader)</div>', unsafe_allow_html=True)
st.markdown('[LinkedIn Profile](https://www.linkedin.com/in/abhay-gupta-197b17264/)')
st.markdown('<div class="team-member">π§ Mayank Das Bairagi</div>', unsafe_allow_html=True)
st.markdown('[LinkedIn Profile](https://www.linkedin.com/in/mayank-das-bairagi-18639525a/)')
st.markdown('<div class="team-member">π» Kripanshu Gupta</div>', unsafe_allow_html=True)
st.markdown('[LinkedIn Profile](https://www.linkedin.com/in/kripanshu-gupta-a66349261/)')
st.markdown('<div class="team-member">π Bhumika Patel</div>', unsafe_allow_html=True)
st.markdown('[LinkedIn Profile](https://www.linkedin.com/in/bhumika-patel-ml/)')
st.markdown('---')
# Advanced Settings
st.markdown('<div class="sub-header">Advanced Settings</div>', unsafe_allow_html=True)
# Available models
available_models = [
'gemma2-9b-it',
'llama3-8b-8192',
'mixtral-8x7b-32768',
'llama3-70b-8192',
'claude-3-5-sonnet-20240620',
'llama-3.1-8b-instant',
'llama-3.2-3b-preview',
'llama-3.3-70b-versatile',
'qwen-2.5-32b',
'mistral-saba-24b'
]
model_option = st.selectbox(
'LLM Model',
available_models,
index=0,
help="Select from available Groq models"
)
# Display the rate limits for the selected model
if model_option in MODEL_LIMITS:
limits = MODEL_LIMITS[model_option]
st.markdown('<div class="model-limits-container">', unsafe_allow_html=True)
st.markdown(f"#### Rate Limits for {model_option}")
# Create a table for the limits
st.markdown("""
<table class="limit-table">
<tr>
<th>Limit Type</th>
<th>Value</th>
</tr>
<tr>
<td>Requests per Minute</td>
<td>{rpm}</td>
</tr>
<tr>
<td>Requests per Day</td>
<td>{rpd}</td>
</tr>
<tr>
<td>Tokens per Minute</td>
<td>{tpm}</td>
</tr>
<tr>
<td>Tokens per Day</td>
<td>{tpd}</td>
</tr>
</table>
""".format(
rpm=limits['rpm'],
rpd=limits['rpd'],
tpm=limits['tpm'],
tpd=limits['tpd']
), unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
search_depth = st.slider('Search Depth', min_value=1, max_value=8, value=5,
help="Higher values will search more thoroughly but take longer")
show_thinking = st.checkbox('Show AI Thinking Process', value=True,
help="Display the step-by-step reasoning process of the AI")
# Clear history button
if st.button('Clear Conversation History'):
st.session_state.conversation_history = []
st.success('Conversation history cleared!')
# Analytics section in sidebar
if st.session_state.feedback_data:
st.markdown('---')
st.markdown('<div class="sub-header">Response Analytics</div>', unsafe_allow_html=True)
# Calculate average rating
ratings = [item['rating'] for item in st.session_state.feedback_data if 'rating' in item]
avg_rating = sum(ratings) / len(ratings) if ratings else 0
# Create a chart
fig = go.Figure(go.Indicator(
mode="gauge+number",
value=avg_rating,
title={'text': "Average Rating"},
domain={'x': [0, 1], 'y': [0, 1]},
gauge={
'axis': {'range': [0, 5]},
'bar': {'color': "#6200EA"},
'steps': [
{'range': [0, 2], 'color': "#FFD0D0"},
{'range': [2, 3.5], 'color': "#FFFFCC"},
{'range': [3.5, 5], 'color': "#D0FFD0"}
]
}
))
fig.update_layout(height=250, margin=dict(l=20, r=20, t=30, b=20))
st.plotly_chart(fig, use_container_width=True)
# Show feedback counts
feedback_counts = {"π Helpful": 0, "π Not Helpful": 0}
for item in st.session_state.feedback_data:
if 'feedback' in item:
if item['feedback'] == 'helpful':
feedback_counts["π Helpful"] += 1
elif item['feedback'] == 'not_helpful':
feedback_counts["π Not Helpful"] += 1
st.markdown("### Feedback Summary")
for key, value in feedback_counts.items():
st.markdown(f"**{key}:** {value}")
# API key input section
st.markdown('<div class="sub-header">API Credentials</div>', unsafe_allow_html=True)
with st.expander("Configure API Keys"):
st.markdown('<div class="api-section">', unsafe_allow_html=True)
api_key = st.text_input("Enter your Groq API key:",
type="password",
value=st.session_state.api_key,
help="Get your API key from https://console.groq.com/keys")
tavily_key = st.text_input("Enter your Tavily API key (optional):",
type="password",
help="Get your Tavily API key from https://tavily.com/#api")
if api_key:
st.session_state.api_key = api_key
os.environ['GROQ_API_KEY'] = api_key
if tavily_key:
os.environ['TAVILY_API_KEY'] = tavily_key
st.markdown('</div>', unsafe_allow_html=True)
# Function to create download link for text data
def get_download_link(text, filename, link_text):
b64 = base64.b64encode(text.encode()).decode()
href = f'<a href="data:file/txt;base64,{b64}" download="{filename}">{link_text}</a>'
return href
# Function to handle feedback submission
def submit_feedback(feedback_type, query, response):
feedback_entry = {
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"query": query,
"response": response,
"feedback": feedback_type
}
st.session_state.feedback_data.append(feedback_entry)
return True
# Function to submit rating
def submit_rating(rating, query, response):
# Find if there's an existing entry for this query/response
for entry in st.session_state.feedback_data:
if entry.get('query') == query and entry.get('response') == response:
entry['rating'] = rating
return True
# If not found, create a new entry
feedback_entry = {
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"query": query,
"response": response,
"rating": rating
}
st.session_state.feedback_data.append(feedback_entry)
return True
# Function to extract URLs from text
def extract_urls(text):
url_pattern = r'https?://(?:[-\w.]|(?:%[\da-fA-F]{2}))+'
return re.findall(url_pattern, text)
# Custom callback to capture agent's thinking process
class ThinkingCapture:
def __init__(self):
self.thinking_steps = []
def on_agent_step(self, agent_step):
# Capture the thought process
if hasattr(agent_step, 'thought') and agent_step.thought:
self.thinking_steps.append(f"Thought: {agent_step.thought}")
if hasattr(agent_step, 'action') and agent_step.action:
self.thinking_steps.append(f"Action: {agent_step.action}")
if hasattr(agent_step, 'observation') and agent_step.observation:
self.thinking_steps.append(f"Observation: {agent_step.observation}")
return agent_step
def get_thinking_process(self):
return "\n".join(self.thinking_steps)
# Setup search tools
try:
if 'TAVILY_API_KEY' in os.environ and os.environ['TAVILY_API_KEY']:
search = TavilyToolSpec(api_key=os.environ['TAVILY_API_KEY'])
else:
# Fallback to a default key or inform the user
st.warning("Using default Tavily API key with limited quota. For better results, please provide your own key.")
search = TavilyToolSpec(api_key=os.getenv('TAVILY_API_KEY'))
def search_tool(prompt: str) -> list:
"""Search the web for information about the given prompt."""
try:
search_results = search.search(prompt, max_results=search_depth)
# Store source URLs
sources = []
for result in search_results:
if hasattr(result, 'url') and result.url:
sources.append({
'title': result.title if hasattr(result, 'title') else "Unknown Source",
'url': result.url
})
# Store in session state for later display
st.session_state.current_sources = sources
return [result.text for result in search_results]
except Exception as e:
return [f"Error during search: {str(e)}"]
search_toolkit = FunctionTool.from_defaults(fn=search_tool)
except Exception as e:
st.error(f"Error setting up search tools: {str(e)}")
search_toolkit = None
# Query input
query = st.text_input("What would you like to know?",
placeholder="Enter your question here...",
help="Ask any question, and our AI will search the web for answers")
# Search button
search_button = st.button("π Search")
# Process the search when button is clicked
if search_button and query:
# Check if API key is provided
if not st.session_state.api_key:
st.error("Please enter your Groq API key first!")
else:
try:
with st.spinner("π§ Searching the web and analyzing results..."):
# Initialize the LLM and agent
llm = Groq(model=model_option)
# Initialize the thinking capture
thinking_capture = ThinkingCapture()
# Create the agent with step callbacks
agent = ReActAgent.from_tools(
[search_toolkit],
llm=llm,
verbose=True,
step_callbacks=[thinking_capture.on_agent_step]
)
# Clear current sources before the new search
st.session_state.current_sources = []
# Get the response
start_time = time.time()
response = agent.chat(query)
end_time = time.time()
# Store the thinking process
st.session_state.thinking_process = thinking_capture.get_thinking_process()
# Extract any additional URLs from the response
additional_urls = extract_urls(response.response)
for url in additional_urls:
if not any(source['url'] == url for source in st.session_state.current_sources):
st.session_state.current_sources.append({
'title': "Referenced Source",
'url': url
})
# Store the response in session state
st.session_state.current_response = {
"query": query,
"response": response.response,
"time": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"duration": round(end_time - start_time, 2),
"sources": st.session_state.current_sources,
"thinking": st.session_state.thinking_process
}
# Add to conversation history
st.session_state.conversation_history.append(st.session_state.current_response)
# Display success message
st.success(f"Found results in {round(end_time - start_time, 2)} seconds!")
except Exception as e:
st.error(f"An error occurred: {str(e)}")
# Display quick source links if available
if st.session_state.current_sources:
st.markdown("### Source Websites:")
st.markdown('<div class="link-container">', unsafe_allow_html=True)
for i, source in enumerate(st.session_state.current_sources[:5]): # Show top 5 sources
st.markdown(f'<a class="website-link" href="{source["url"]}" target="_blank">π {source.get("title", "Source "+str(i+1))[:30]}...</a>', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
# Display current response if available
if st.session_state.current_response:
with st.container():
st.markdown('<div class="response-container">', unsafe_allow_html=True)
st.markdown("### Response:")
st.write(st.session_state.current_response["response"])
# Export options
col1, col2 = st.columns(2)
with col1:
st.markdown(
get_download_link(
st.session_state.current_response["response"],
f"search_result_{datetime.now().strftime('%Y%m%d_%H%M%S')}.txt",
"Download as Text"
),
unsafe_allow_html=True
)
with col2:
# Create JSON with metadata
json_data = json.dumps({
"query": st.session_state.current_response["query"],
"response": st.session_state.current_response["response"],
"timestamp": st.session_state.current_response["time"],
"processing_time": st.session_state.current_response["duration"],
"sources": st.session_state.current_sources if "sources" in st.session_state.current_response else [],
"thinking_process": st.session_state.thinking_process if "thinking" in st.session_state.current_response else ""
}, indent=4)
st.markdown(
get_download_link(
json_data,
f"search_result_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
"Download as JSON with Sources"
),
unsafe_allow_html=True
)
st.markdown('</div>', unsafe_allow_html=True)
# Display thinking process if enabled
if show_thinking and "thinking" in st.session_state.current_response:
with st.expander("View AI Thinking Process", expanded=True):
st.markdown('<div class="thinking-container">', unsafe_allow_html=True)
# Create a formatted display of the thinking steps
thinking_text = st.session_state.current_response["thinking"]
steps = thinking_text.split('\n')
for step in steps:
if step.strip():
step_type = ""
if step.startswith("Thought:"):
step_type = "π"
elif step.startswith("Action:"):
step_type = "π"
elif step.startswith("Observation:"):
step_type = "π"
st.markdown(f'<div class="thinking-step">{step_type} {step}</div>', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
# Display sources if available
if "sources" in st.session_state.current_response and st.session_state.current_response["sources"]:
with st.expander("View Detailed Sources", expanded=True):
st.markdown('<div class="sources-container">', unsafe_allow_html=True)
for i, source in enumerate(st.session_state.current_response["sources"]):
st.markdown(f'<div class="source-item">', unsafe_allow_html=True)
st.markdown(f"**Source {i+1}:** {source.get('title', 'Unknown Source')}")
st.markdown(f'<div class="source-url"><a href="{source["url"]}" target="_blank">{source["url"]}</a></div>', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
# Feedback section
st.markdown('<div class="feedback-container">', unsafe_allow_html=True)
st.markdown("### Was this response helpful?")
col1, col2 = st.columns(2)
with col1:
if st.button("π Helpful", key="helpful_btn"):
if submit_feedback("helpful", st.session_state.current_response["query"], st.session_state.current_response["response"]):
st.success("Thank you for your feedback!")
with col2:
if st.button("π Not Helpful", key="not_helpful_btn"):
if submit_feedback("not_helpful", st.session_state.current_response["query"], st.session_state.current_response["response"]):
st.success("Thank you for your feedback! We'll work to improve our responses.")
st.markdown("### Rate this response:")
rating = st.slider("", min_value=1, max_value=5, value=4,
help="Rate the quality of this response from 1 (poor) to 5 (excellent)")
if st.button("Submit Rating"):
if submit_rating(rating, st.session_state.current_response["query"], st.session_state.current_response["response"]):
st.success("Rating submitted! Thank you for helping us improve.")
st.markdown('</div>', unsafe_allow_html=True)
# Display conversation history
if st.session_state.conversation_history:
with st.expander("View Conversation History"):
for i, item in enumerate(reversed(st.session_state.conversation_history)):
st.markdown(f'<div class="history-item">', unsafe_allow_html=True)
st.markdown(f'<span class="query-text">Q: {item["query"]}</span> <small>({item["time"]})</small>', unsafe_allow_html=True)
st.markdown(f'<div class="response-text">A: {item["response"][:200]}{"..." if len(item["response"]) > 200 else ""}</div>', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
if i < len(st.session_state.conversation_history) - 1:
st.markdown('---')
# Footer with attribution
st.markdown('''
<div class="footer">
<p>Powered by Groq + Llama-Index + Tavily Search | Created by TechMatrix Solvers | 2025</p>
</div>
''', unsafe_allow_html=True) |