|
import pandas as pd
|
|
import numpy as np
|
|
import time
|
|
from datetime import datetime
|
|
|
|
def generate_realtime_data(num_rows=1):
|
|
"""Generates simulated sales data."""
|
|
products = ['Electronics', 'Clothing', 'Books', 'Home Goods']
|
|
payment_methods = ['Credit Card', 'Debit Card', 'UPI', 'Net Banking']
|
|
|
|
data = []
|
|
for _ in range(num_rows):
|
|
timestamp = datetime.now()
|
|
product_type = np.random.choice(products)
|
|
price = round(np.random.uniform(10, 500), 2)
|
|
num_clicks = np.random.randint(1, 100)
|
|
payment_method = np.random.choice(payment_methods)
|
|
customer_id = np.random.randint(1000, 9999)
|
|
data.append([timestamp, product_type, price, num_clicks, payment_method, customer_id])
|
|
|
|
df = pd.DataFrame(data, columns=['timestamp', 'product_type', 'price', 'num_clicks', 'payment_method', 'customer_id'])
|
|
return df
|
|
|
|
if __name__ == "__main__":
|
|
while True:
|
|
new_data = generate_realtime_data()
|
|
print(new_data)
|
|
|
|
|
|
time.sleep(1) |