import pandas as pd import numpy as np import time from datetime import datetime def generate_realtime_data(num_rows=1): """Generates simulated sales data.""" products = ['Electronics', 'Clothing', 'Books', 'Home Goods'] payment_methods = ['Credit Card', 'Debit Card', 'UPI', 'Net Banking'] data = [] for _ in range(num_rows): timestamp = datetime.now() product_type = np.random.choice(products) price = round(np.random.uniform(10, 500), 2) num_clicks = np.random.randint(1, 100) payment_method = np.random.choice(payment_methods) customer_id = np.random.randint(1000, 9999) data.append([timestamp, product_type, price, num_clicks, payment_method, customer_id]) df = pd.DataFrame(data, columns=['timestamp', 'product_type', 'price', 'num_clicks', 'payment_method', 'customer_id']) return df if __name__ == "__main__": while True: new_data = generate_realtime_data() print(new_data) # In a real application, you would likely append this to a larger DataFrame # or stream it to your dashboard. time.sleep(1) # Simulate data generation every 1 second