aalkaswan commited on
Commit
ba537af
·
verified ·
1 Parent(s): f623847

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -40
app.py CHANGED
@@ -27,35 +27,21 @@ def plot_scatter(cat, x, y, col):
27
  grouped_cat = data.groupby(["model", "tag"]).size().reset_index(name="count").sort_values(by="count", ascending=False)
28
  grouped_cat["count"] = grouped_cat.groupby(["model"])["count"].transform(lambda x: x / x.sum())
29
 
30
- # minimal example
31
- pivot_df = grouped_cat.pivot(index='model', columns='tag', values='count').fillna(0).reset_index()
32
-
 
33
  if col == "Size":
34
- pivot_df[col] = pivot_df["model"].map(size_map)
 
35
  else:
36
- pivot_df[col] = pivot_df["model"].str.split("/").str[0]
37
-
38
- fig = px.scatter_3d(pivot_df, x=x, y=y, z=z,
39
- hover_name="model",
40
- title=f'{x} vs {y} vs {z}',
41
- color=col,
42
- color_continuous_scale="agsunset")
43
-
44
- # # Pivot the data for stacking
45
- # pivot_df = grouped_cat.pivot(index='model', columns='tag', values='count').fillna(0)
46
- # # pivot_df = pivot_df.sort_values(by="A", ascending=False)
47
- # # add color vis
48
- # if col == "Size":
49
- # pivot_df[col] = pivot_df.index.map(size_map)
50
- # grouped_cat = grouped_cat.dropna(inplace=True)
51
- # else:
52
- # pivot_df[col] = pivot_df.index.str.split("/").str[0]
53
 
54
- # # Create an interactive scatter plot
55
- # fig = px.scatter(pivot_df, x=x, y=y, hover_name=pivot_df.index, title=f'{x} vs {y}', color=col, color_continuous_scale="agsunset")
56
 
57
- # # Show the plot
58
- # return fig
59
 
60
  # Tab 3
61
  def plot_scatter_tab3(subcat, col):
@@ -131,13 +117,6 @@ def plot_scatter_tab5(cat, x, y, z, col):
131
  grouped_cat = data.groupby(["model", "tag"]).size().reset_index(name="count").sort_values(by="count", ascending=False)
132
  grouped_cat["count"] = grouped_cat.groupby(["model"])["count"].transform(lambda x: x / x.sum())
133
 
134
- # Pivot the data for stacking
135
- # pivot_df = grouped_cat.pivot(index='model', columns='tag', values='count').fillna(0)
136
- # if col == "Size":
137
- # pivot_df[col] = pivot_df.index.map(size_map)
138
- # else:
139
- # pivot_df[col] = pivot_df.index.str.split("/").str[0]
140
-
141
  pivot_df = grouped_cat.pivot(index='model', columns='tag', values='count').fillna(0).reset_index()
142
 
143
  if col == "Size":
@@ -151,18 +130,10 @@ def plot_scatter_tab5(cat, x, y, z, col):
151
  color=col,
152
  color_continuous_scale="agsunset")
153
 
154
-
155
- # Create an interactive scatter plot
156
- # fig = px.scatter(pivot_df, x=x, y=y, hover_name=pivot_df.index, title=f'{x} vs {y}', color=col, color_continuous_scale="agsunset")
157
- # fig = plt.figure()
158
-
159
- # plot = px.scatter_3d(pivot_df[x], pivot_df[y], pivot_df[z]) #c=pivot_df[col], cmap='viridis')
160
  print(pivot_df)
161
 
162
- # fig = px.scatter_3d(pivot_df, x=x, y=y,z=z, hover_name=pivot_df.index, title=f'{x} vs {y} vs {z}', color=col, color_continuous_scale="agsunset")
163
  return fig
164
 
165
-
166
  # Tab 6
167
  data_with_text = pd.read_csv("./tagged_data_with_text.csv")
168
  def random_sample(r: gr.Request):
 
27
  grouped_cat = data.groupby(["model", "tag"]).size().reset_index(name="count").sort_values(by="count", ascending=False)
28
  grouped_cat["count"] = grouped_cat.groupby(["model"])["count"].transform(lambda x: x / x.sum())
29
 
30
+ # Pivot the data for stacking
31
+ pivot_df = grouped_cat.pivot(index='model', columns='tag', values='count').fillna(0)
32
+ # pivot_df = pivot_df.sort_values(by="A", ascending=False)
33
+ # add color vis
34
  if col == "Size":
35
+ pivot_df[col] = pivot_df.index.map(size_map)
36
+ grouped_cat = grouped_cat.dropna(inplace=True)
37
  else:
38
+ pivot_df[col] = pivot_df.index.str.split("/").str[0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
+ # Create an interactive scatter plot
41
+ fig = px.scatter(pivot_df, x=x, y=y, hover_name=pivot_df.index, title=f'{x} vs {y}', color=col, color_continuous_scale="agsunset")
42
 
43
+ # Show the plot
44
+ return fig
45
 
46
  # Tab 3
47
  def plot_scatter_tab3(subcat, col):
 
117
  grouped_cat = data.groupby(["model", "tag"]).size().reset_index(name="count").sort_values(by="count", ascending=False)
118
  grouped_cat["count"] = grouped_cat.groupby(["model"])["count"].transform(lambda x: x / x.sum())
119
 
 
 
 
 
 
 
 
120
  pivot_df = grouped_cat.pivot(index='model', columns='tag', values='count').fillna(0).reset_index()
121
 
122
  if col == "Size":
 
130
  color=col,
131
  color_continuous_scale="agsunset")
132
 
 
 
 
 
 
 
133
  print(pivot_df)
134
 
 
135
  return fig
136
 
 
137
  # Tab 6
138
  data_with_text = pd.read_csv("./tagged_data_with_text.csv")
139
  def random_sample(r: gr.Request):