Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -27,35 +27,21 @@ def plot_scatter(cat, x, y, col):
|
|
27 |
grouped_cat = data.groupby(["model", "tag"]).size().reset_index(name="count").sort_values(by="count", ascending=False)
|
28 |
grouped_cat["count"] = grouped_cat.groupby(["model"])["count"].transform(lambda x: x / x.sum())
|
29 |
|
30 |
-
#
|
31 |
-
pivot_df = grouped_cat.pivot(index='model', columns='tag', values='count').fillna(0)
|
32 |
-
|
|
|
33 |
if col == "Size":
|
34 |
-
pivot_df[col] = pivot_df
|
|
|
35 |
else:
|
36 |
-
pivot_df[col] = pivot_df
|
37 |
-
|
38 |
-
fig = px.scatter_3d(pivot_df, x=x, y=y, z=z,
|
39 |
-
hover_name="model",
|
40 |
-
title=f'{x} vs {y} vs {z}',
|
41 |
-
color=col,
|
42 |
-
color_continuous_scale="agsunset")
|
43 |
-
|
44 |
-
# # Pivot the data for stacking
|
45 |
-
# pivot_df = grouped_cat.pivot(index='model', columns='tag', values='count').fillna(0)
|
46 |
-
# # pivot_df = pivot_df.sort_values(by="A", ascending=False)
|
47 |
-
# # add color vis
|
48 |
-
# if col == "Size":
|
49 |
-
# pivot_df[col] = pivot_df.index.map(size_map)
|
50 |
-
# grouped_cat = grouped_cat.dropna(inplace=True)
|
51 |
-
# else:
|
52 |
-
# pivot_df[col] = pivot_df.index.str.split("/").str[0]
|
53 |
|
54 |
-
#
|
55 |
-
|
56 |
|
57 |
-
#
|
58 |
-
|
59 |
|
60 |
# Tab 3
|
61 |
def plot_scatter_tab3(subcat, col):
|
@@ -131,13 +117,6 @@ def plot_scatter_tab5(cat, x, y, z, col):
|
|
131 |
grouped_cat = data.groupby(["model", "tag"]).size().reset_index(name="count").sort_values(by="count", ascending=False)
|
132 |
grouped_cat["count"] = grouped_cat.groupby(["model"])["count"].transform(lambda x: x / x.sum())
|
133 |
|
134 |
-
# Pivot the data for stacking
|
135 |
-
# pivot_df = grouped_cat.pivot(index='model', columns='tag', values='count').fillna(0)
|
136 |
-
# if col == "Size":
|
137 |
-
# pivot_df[col] = pivot_df.index.map(size_map)
|
138 |
-
# else:
|
139 |
-
# pivot_df[col] = pivot_df.index.str.split("/").str[0]
|
140 |
-
|
141 |
pivot_df = grouped_cat.pivot(index='model', columns='tag', values='count').fillna(0).reset_index()
|
142 |
|
143 |
if col == "Size":
|
@@ -151,18 +130,10 @@ def plot_scatter_tab5(cat, x, y, z, col):
|
|
151 |
color=col,
|
152 |
color_continuous_scale="agsunset")
|
153 |
|
154 |
-
|
155 |
-
# Create an interactive scatter plot
|
156 |
-
# fig = px.scatter(pivot_df, x=x, y=y, hover_name=pivot_df.index, title=f'{x} vs {y}', color=col, color_continuous_scale="agsunset")
|
157 |
-
# fig = plt.figure()
|
158 |
-
|
159 |
-
# plot = px.scatter_3d(pivot_df[x], pivot_df[y], pivot_df[z]) #c=pivot_df[col], cmap='viridis')
|
160 |
print(pivot_df)
|
161 |
|
162 |
-
# fig = px.scatter_3d(pivot_df, x=x, y=y,z=z, hover_name=pivot_df.index, title=f'{x} vs {y} vs {z}', color=col, color_continuous_scale="agsunset")
|
163 |
return fig
|
164 |
|
165 |
-
|
166 |
# Tab 6
|
167 |
data_with_text = pd.read_csv("./tagged_data_with_text.csv")
|
168 |
def random_sample(r: gr.Request):
|
|
|
27 |
grouped_cat = data.groupby(["model", "tag"]).size().reset_index(name="count").sort_values(by="count", ascending=False)
|
28 |
grouped_cat["count"] = grouped_cat.groupby(["model"])["count"].transform(lambda x: x / x.sum())
|
29 |
|
30 |
+
# Pivot the data for stacking
|
31 |
+
pivot_df = grouped_cat.pivot(index='model', columns='tag', values='count').fillna(0)
|
32 |
+
# pivot_df = pivot_df.sort_values(by="A", ascending=False)
|
33 |
+
# add color vis
|
34 |
if col == "Size":
|
35 |
+
pivot_df[col] = pivot_df.index.map(size_map)
|
36 |
+
grouped_cat = grouped_cat.dropna(inplace=True)
|
37 |
else:
|
38 |
+
pivot_df[col] = pivot_df.index.str.split("/").str[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
# Create an interactive scatter plot
|
41 |
+
fig = px.scatter(pivot_df, x=x, y=y, hover_name=pivot_df.index, title=f'{x} vs {y}', color=col, color_continuous_scale="agsunset")
|
42 |
|
43 |
+
# Show the plot
|
44 |
+
return fig
|
45 |
|
46 |
# Tab 3
|
47 |
def plot_scatter_tab3(subcat, col):
|
|
|
117 |
grouped_cat = data.groupby(["model", "tag"]).size().reset_index(name="count").sort_values(by="count", ascending=False)
|
118 |
grouped_cat["count"] = grouped_cat.groupby(["model"])["count"].transform(lambda x: x / x.sum())
|
119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
pivot_df = grouped_cat.pivot(index='model', columns='tag', values='count').fillna(0).reset_index()
|
121 |
|
122 |
if col == "Size":
|
|
|
130 |
color=col,
|
131 |
color_continuous_scale="agsunset")
|
132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
print(pivot_df)
|
134 |
|
|
|
135 |
return fig
|
136 |
|
|
|
137 |
# Tab 6
|
138 |
data_with_text = pd.read_csv("./tagged_data_with_text.csv")
|
139 |
def random_sample(r: gr.Request):
|