Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -19,6 +19,14 @@ size_map = json.load(open("size_map.json"))
|
|
19 |
raw_data = pd.read_csv("./tagged_data.csv")
|
20 |
|
21 |
def plot_scatter(cat, x, y, col):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
# minimal example
|
23 |
pivot_df = grouped_cat.pivot(index='model', columns='tag', values='count').fillna(0).reset_index()
|
24 |
|
@@ -33,14 +41,6 @@ def plot_scatter(cat, x, y, col):
|
|
33 |
color=col,
|
34 |
color_continuous_scale="agsunset")
|
35 |
|
36 |
-
# if cat != "All":
|
37 |
-
# data = raw_data[raw_data["Category"] == cat]
|
38 |
-
# else:
|
39 |
-
# data = raw_data
|
40 |
-
# # Group and normalize the data
|
41 |
-
# grouped_cat = data.groupby(["model", "tag"]).size().reset_index(name="count").sort_values(by="count", ascending=False)
|
42 |
-
# grouped_cat["count"] = grouped_cat.groupby(["model"])["count"].transform(lambda x: x / x.sum())
|
43 |
-
|
44 |
# # Pivot the data for stacking
|
45 |
# pivot_df = grouped_cat.pivot(index='model', columns='tag', values='count').fillna(0)
|
46 |
# # pivot_df = pivot_df.sort_values(by="A", ascending=False)
|
|
|
19 |
raw_data = pd.read_csv("./tagged_data.csv")
|
20 |
|
21 |
def plot_scatter(cat, x, y, col):
|
22 |
+
if cat != "All":
|
23 |
+
data = raw_data[raw_data["Category"] == cat]
|
24 |
+
else:
|
25 |
+
data = raw_data
|
26 |
+
# Group and normalize the data
|
27 |
+
grouped_cat = data.groupby(["model", "tag"]).size().reset_index(name="count").sort_values(by="count", ascending=False)
|
28 |
+
grouped_cat["count"] = grouped_cat.groupby(["model"])["count"].transform(lambda x: x / x.sum())
|
29 |
+
|
30 |
# minimal example
|
31 |
pivot_df = grouped_cat.pivot(index='model', columns='tag', values='count').fillna(0).reset_index()
|
32 |
|
|
|
41 |
color=col,
|
42 |
color_continuous_scale="agsunset")
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
# # Pivot the data for stacking
|
45 |
# pivot_df = grouped_cat.pivot(index='model', columns='tag', values='count').fillna(0)
|
46 |
# # pivot_df = pivot_df.sort_values(by="A", ascending=False)
|