Spaces:
Running
Running
File size: 12,030 Bytes
e8552c6 5f41070 e8552c6 03a66dc 60ad7ee a533e1d 60ad7ee 0f5cce3 60ad7ee 0f5cce3 60ad7ee 0f5cce3 60ad7ee 0f5cce3 e8552c6 d758394 e8552c6 d758394 e8552c6 6550c45 dba1b37 6550c45 e8552c6 d758394 e8552c6 6550c45 d758394 6550c45 e8552c6 5c8c4b0 d758394 5c8c4b0 e8552c6 5c8c4b0 e8552c6 5c8c4b0 e8552c6 d758394 3b1fa04 e8552c6 3b1fa04 e8552c6 6550c45 5c8c4b0 d758394 6550c45 d758394 5c8c4b0 6550c45 5c8c4b0 6550c45 5c8c4b0 6550c45 e8552c6 6550c45 e8552c6 3b1fa04 6550c45 e8552c6 6550c45 ddee870 d758394 ddee870 d758394 ddee870 d758394 ddee870 d758394 ddee870 d758394 43a0973 6550c45 d758394 258d48a 8605607 d758394 6550c45 8605607 258d48a 6550c45 8605607 258d48a 6550c45 8605607 258d48a d758394 43a0973 6550c45 e8552c6 6550c45 a533e1d 8605607 d758394 6550c45 a533e1d f5d0565 a533e1d f5d0565 a533e1d f5d0565 a533e1d 6550c45 03a66dc 6550c45 e8552c6 03a66dc 6550c45 e8552c6 6550c45 e8552c6 aacbe29 e8552c6 6550c45 e8552c6 6550c45 e8552c6 a533e1d 3b1fa04 e8552c6 a533e1d d758394 e8552c6 6550c45 448110d a533e1d e8552c6 d758394 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import json
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, BitsAndBytesConfig
import torch
import os
import gradio_client.utils as client_utils
import sys
import tempfile
# ===============================
# Recursion Handling Fix
# ===============================
def _patched_json_schema_to_python_type(schema, defs=None, depth=0):
if depth > 100:
return "Any"
if isinstance(schema, bool):
return "Any" if schema else "None"
try:
return client_utils._json_schema_to_python_type(schema, defs)
except RecursionError:
return "Any"
client_utils._json_schema_to_python_type = _patched_json_schema_to_python_type
sys.setrecursionlimit(10000)
# ===============================
# Device and Model Setup
# ===============================
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
hf_token = os.environ["HF_TOKEN"]
model_path = "AI-Mock-Interviewer/T5"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
model.to(device)
bnb_config = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_enable_fp32_cpu_offload=True,
)
qwq_model_id = "unsloth/QwQ-32B-unsloth-bnb-4bit"
qwq_tokenizer = AutoTokenizer.from_pretrained(qwq_model_id, trust_remote_code=True)
qwq_model = AutoModelForCausalLM.from_pretrained(
qwq_model_id,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True
)
# ===============================
# Prompts and Scoring
# ===============================
system_prompt = """
You are conducting a mock technical interview. The candidate's experience level can be entry-level, mid-level, or senior-level...
"""
subtopic_keywords = {
"data analysis": ["data cleaning", "missing data", "EDA", "visualization"],
"machine learning": ["supervised learning", "overfitting", "hyperparameter tuning"],
"software engineering": ["code optimization", "design patterns", "database design"],
}
rating_scores = {"Good": 3, "Average": 2, "Needs Improvement": 1}
score_categories = [(90, "Excellent"), (75, "Very Good"), (60, "Good"), (45, "Average"), (0, "Needs Improvement")]
# ===============================
# Utility for Gradio Chat Format
# ===============================
def convert_for_gradio(convo):
role_map = {
"Interviewer": "assistant",
"Candidate": "user",
"Evaluator": "system",
"System": "system"
}
return [{"role": role_map.get(msg["role"], "system"), "content": msg["content"]} for msg in convo]
# ===============================
# Core Functions
# ===============================
def identify_subtopic(question, domain):
domain = domain.lower()
if domain in subtopic_keywords:
for subtopic in subtopic_keywords[domain]:
if subtopic in question.lower():
return subtopic
return None
def generate_question(prompt, domain, state=None):
full_prompt = system_prompt + "\n" + prompt
tokenizer.padding_side = "left"
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
inputs = tokenizer(full_prompt, return_tensors="pt", padding=True, truncation=True).to(device)
outputs = model.generate(
inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_new_tokens=50,
no_repeat_ngram_size=2,
top_k=30,
top_p=0.9,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
)
question = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
if not question.endswith("?"):
question += "?"
subtopic = identify_subtopic(question, domain)
if state is not None:
if question not in state["asked_questions"] and (subtopic is None or subtopic not in state["asked_subtopics"]):
state["asked_questions"].append(question)
if subtopic:
state["asked_subtopics"].append(subtopic)
return question
return question
def evaluate_response(response, question):
qwq_tokenizer.padding_side = "left"
if qwq_tokenizer.pad_token is None:
qwq_tokenizer.pad_token = qwq_tokenizer.eos_token
eval_prompt = (
"Evaluate the following candidate response to an interview question.\n\n"
f"**Question:** {question}\n"
f"**Candidate's Response:** {response}\n\n"
"Provide a rating as: 'Good', 'Average', or 'Needs Improvement'.\n"
"Also, provide a brief suggestion for improvement. Format:\n"
"Rating: <Rating>\nSuggestion: <Suggestion>"
)
inputs = qwq_tokenizer(eval_prompt, return_tensors="pt", padding=True, truncation=True).to(qwq_model.device)
outputs = qwq_model.generate(
inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_new_tokens=100,
top_k=30,
top_p=0.9,
temperature=0.7,
do_sample=True,
pad_token_id=qwq_tokenizer.pad_token_id,
)
evaluation = qwq_tokenizer.decode(outputs[0], skip_special_tokens=True)
rating, suggestion = "Unknown", "No suggestion available."
for line in evaluation.splitlines():
if "Rating:" in line:
rating = line.split("Rating:")[1].strip()
if "Suggestion:" in line:
suggestion = line.split("Suggestion:")[1].strip()
return rating, suggestion
def reset_state(name, domain, company, level):
return {
"name": name,
"domain": domain,
"company": company,
"level": level,
"asked_questions": [],
"asked_subtopics": [],
"conversation": [],
"evaluations": [],
"interview_active": True
}
def start_interview(name, domain, company, level):
try:
print(f"Start Interview Called:\nName: {name}\nDomain: {domain}\nLevel: {level}")
if not name or not domain:
return [{"role": "system", "content": "Please provide a name and domain"}], None
state = reset_state(name, domain, company, level)
prompt = f"Domain: {domain}. Candidate experience level: {level}. Generate the first question:"
question = generate_question(prompt, domain, state)
state["conversation"].append({"role": "Interviewer", "content": question})
return convert_for_gradio(state["conversation"]), state
except Exception as e:
return [{"role": "system", "content": f"Critical error: {e}"}], None
def submit_response(response, state):
if state is None or not state.get("interview_active", False):
return [{"role": "system", "content": "Interview is not active."}], state
if not response or not response.strip():
state["conversation"].append({"role": "System", "content": "β οΈ Please answer the question before proceeding."})
return convert_for_gradio(state["conversation"]), state
if response.strip().lower() == "exit":
return end_interview(state)
state["conversation"].append({"role": "Candidate", "content": response})
last_q = next((msg["content"] for msg in reversed(state["conversation"]) if msg["role"] == "Interviewer"), "")
rating, suggestion = evaluate_response(response, last_q)
state["evaluations"].append({
"question": last_q,
"response": response,
"rating": rating,
"suggestion": suggestion
})
state["conversation"].append({"role": "Evaluator", "content": f"Rating: {rating}\nSuggestion: {suggestion}"})
prompt = f"Domain: {state['domain']}. Candidate's last response: {response}. Generate a follow-up question:"
follow_up = generate_question(prompt, state["domain"], state)
state["conversation"].append({"role": "Interviewer", "content": follow_up})
return convert_for_gradio(state["conversation"]), state
def end_interview(state):
state["interview_active"] = False
total = sum(rating_scores.get(ev["rating"], 0) for ev in state["evaluations"])
max_total = len(state["evaluations"]) * 3
percent = (total / max_total * 100) if max_total > 0 else 0
category = next(label for threshold, label in score_categories if percent >= threshold)
summary = {
"name": state["name"],
"domain": state["domain"],
"level": state["level"],
"company": state["company"],
"score": f"{total}/{max_total}",
"percentage": round(percent, 2),
"category": category,
"evaluations": state["evaluations"]
}
filename = f"sessions/{state['name'].replace(' ', '_').lower()}_session.json"
os.makedirs("sessions", exist_ok=True)
with open(filename, "w") as f:
json.dump(summary, f, indent=4)
# Add detailed evaluations to the conversation
for ev in state["evaluations"]:
detail = (
f"π **Question:** {ev['question']}\n"
f"π¬ **Your Response:** {ev['response']}\n"
f"π’ **Rating:** {ev['rating']}\n"
f"π‘ **Suggestion:** {ev['suggestion']}"
)
state["conversation"].append({"role": "System", "content": detail})
state["conversation"].append({"role": "System", "content": f"β
Interview ended. \nFinal Score: {summary['score']} ({summary['category']})"})
return convert_for_gradio(state["conversation"]), state
def prepare_downloadable_summary(state):
total_score = sum(rating_scores.get(ev["rating"], 0) for ev in state["evaluations"])
max_score = len(state["evaluations"]) * 3
percentage = (total_score / max_score * 100) if max_score > 0 else 0
category = next(label for threshold, label in score_categories if percentage >= threshold)
summary = {
"name": state["name"],
"domain": state["domain"],
"level": state["level"],
"company": state["company"],
"score": f"{total_score}/{max_score}",
"percentage": round(percentage, 2),
"category": category,
"evaluations": state["evaluations"]
}
with tempfile.NamedTemporaryFile(mode="w+", delete=False, suffix=".json") as f:
json.dump(summary, f, indent=4)
return f.name
def clear_state():
return [], reset_state("", "", "", "Entry-Level")
# ===============================
# Gradio UI
# ===============================
with gr.Blocks() as demo:
gr.Markdown("# π§ AI Mock Interview with Evaluation")
with gr.Row():
name_input = gr.Textbox(label="Your Name")
domain_input = gr.Textbox(label="Domain", placeholder="e.g. Software Engineering")
company_input = gr.Textbox(label="Company (Optional)", placeholder="e.g. Google")
level_input = gr.Dropdown(
label="Experience Level",
choices=["Entry-Level", "Mid-Level", "Senior-Level"],
value="Entry-Level"
)
start_button = gr.Button("Start Interview")
chatbot = gr.Chatbot(label="Interview Conversation", height=450, type="messages")
with gr.Row():
response_input = gr.Textbox(label="Your Response (type 'exit' to quit)", lines=2)
submit_button = gr.Button("Submit")
exit_button = gr.Button("Exit Interview")
clear_button = gr.Button("Clear Session")
with gr.Row():
download_button = gr.Button("π₯ Download Evaluation Report")
download_file = gr.File(label="Download", visible=True)
# Session state holder
state = gr.State(value=reset_state("", "", "", "Entry-Level"))
# Hooking up logic to UI
start_button.click(start_interview, inputs=[name_input, domain_input, company_input, level_input], outputs=[chatbot, state])
submit_button.click(submit_response, inputs=[response_input, state], outputs=[chatbot, state]).then(lambda: "", None, response_input)
exit_button.click(end_interview, inputs=state, outputs=[chatbot, state])
clear_button.click(clear_state, outputs=[chatbot, state])
download_button.click(prepare_downloadable_summary, inputs=[state], outputs=[download_file])
demo.launch()
|