Mohinikathro commited on
Commit
5c8c4b0
·
verified ·
1 Parent(s): 0f5cce3

changes made to app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -4
app.py CHANGED
@@ -96,16 +96,24 @@ def identify_subtopic(question, domain):
96
 
97
  def generate_question(prompt, domain, state=None):
98
  full_prompt = system_prompt + "\n" + prompt
99
- inputs = tokenizer(full_prompt, return_tensors="pt").to(device)
 
 
 
 
 
 
 
100
  outputs = model.generate(
101
  inputs["input_ids"],
 
102
  max_new_tokens=50,
103
  no_repeat_ngram_size=2,
104
  top_k=30,
105
  top_p=0.9,
106
  temperature=0.7,
107
  do_sample=True,
108
- pad_token_id=tokenizer.eos_token_id,
109
  )
110
  question = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
111
  if not question.endswith("?"):
@@ -124,6 +132,11 @@ def generate_question(prompt, domain, state=None):
124
 
125
 
126
  def evaluate_response(response, question):
 
 
 
 
 
127
  eval_prompt = (
128
  "Evaluate the following candidate response to an interview question.\n\n"
129
  f"**Question:** {question}\n"
@@ -132,15 +145,19 @@ def evaluate_response(response, question):
132
  "Also, provide a brief suggestion for improvement. Format:\n"
133
  "Rating: <Rating>\nSuggestion: <Suggestion>"
134
  )
135
- inputs = qwq_tokenizer(eval_prompt, return_tensors="pt", padding=True).to(qwq_model.device)
 
 
 
136
  outputs = qwq_model.generate(
137
  inputs["input_ids"],
 
138
  max_new_tokens=100,
139
  top_k=30,
140
  top_p=0.9,
141
  temperature=0.7,
142
  do_sample=True,
143
- pad_token_id=qwq_tokenizer.eos_token_id,
144
  )
145
  evaluation = qwq_tokenizer.decode(outputs[0], skip_special_tokens=True)
146
  rating, suggestion = "Unknown", "No suggestion available."
 
96
 
97
  def generate_question(prompt, domain, state=None):
98
  full_prompt = system_prompt + "\n" + prompt
99
+ # Explicitly set padding side and add pad token
100
+ tokenizer.padding_side = "left"
101
+ if tokenizer.pad_token is None:
102
+ tokenizer.pad_token = tokenizer.eos_token
103
+
104
+ # Tokenize with explicit padding and attention mask
105
+ inputs = tokenizer(full_prompt, return_tensors="pt", padding=True, truncation=True).to(device)
106
+
107
  outputs = model.generate(
108
  inputs["input_ids"],
109
+ attention_mask=inputs["attention_mask"],
110
  max_new_tokens=50,
111
  no_repeat_ngram_size=2,
112
  top_k=30,
113
  top_p=0.9,
114
  temperature=0.7,
115
  do_sample=True,
116
+ pad_token_id=tokenizer.pad_token_id,
117
  )
118
  question = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
119
  if not question.endswith("?"):
 
132
 
133
 
134
  def evaluate_response(response, question):
135
+ # Explicitly set padding side and add pad token
136
+ qwq_tokenizer.padding_side = "left"
137
+ if qwq_tokenizer.pad_token is None:
138
+ qwq_tokenizer.pad_token = qwq_tokenizer.eos_token
139
+
140
  eval_prompt = (
141
  "Evaluate the following candidate response to an interview question.\n\n"
142
  f"**Question:** {question}\n"
 
145
  "Also, provide a brief suggestion for improvement. Format:\n"
146
  "Rating: <Rating>\nSuggestion: <Suggestion>"
147
  )
148
+
149
+ # Tokenize with explicit padding and attention mask
150
+ inputs = qwq_tokenizer(eval_prompt, return_tensors="pt", padding=True, truncation=True).to(qwq_model.device)
151
+
152
  outputs = qwq_model.generate(
153
  inputs["input_ids"],
154
+ attention_mask=inputs["attention_mask"],
155
  max_new_tokens=100,
156
  top_k=30,
157
  top_p=0.9,
158
  temperature=0.7,
159
  do_sample=True,
160
+ pad_token_id=qwq_tokenizer.pad_token_id,
161
  )
162
  evaluation = qwq_tokenizer.decode(outputs[0], skip_special_tokens=True)
163
  rating, suggestion = "Unknown", "No suggestion available."