test / app.py
AGCobra's picture
Upload 3 files
0a9785c verified
import torch
import gradio as gr
from PIL import Image
import qrcode
from pathlib import Path
import requests
import io
import os
import spaces
import random
from diffusers import (
StableDiffusionXLControlNetPipeline,
ControlNetModel,
AutoencoderKL,
DiffusionPipeline,
DDIMScheduler,
DPMSolverMultistepScheduler,
DEISMultistepScheduler,
HeunDiscreteScheduler,
EulerDiscreteScheduler,
)
MAX_SEED = 2**32 - 1
# QR Code generation setup
qrcode_generator = qrcode.QRCode(
version=1,
error_correction=qrcode.ERROR_CORRECT_H,
box_size=16,
border=4,
)
# SDXL and ControlNet setup
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
controlnet = ControlNetModel.from_pretrained(
"AGCobra/1",
torch_dtype=torch.float16
).to(device)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
vae=vae,
controlnet=controlnet,
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16",
).to(device)
# Sampler setup
SAMPLER_MAP = {
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
"DPM++ Karras": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True),
"Heun": lambda config: HeunDiscreteScheduler.from_config(config),
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
"DDIM": lambda config: DDIMScheduler.from_config(config),
"DEIS": lambda config: DEISMultistepScheduler.from_config(config),
}
def resize_for_condition_image(input_image: Image.Image, resolution: int):
input_image = input_image.convert("RGB")
W, H = input_image.size
k = float(resolution) / min(H, W)
H *= k
W *= k
H = int(round(H / 64.0)) * 64
W = int(round(W / 64.0)) * 64
img = input_image.resize((W, H), resample=Image.LANCZOS)
return img
@spaces.GPU()
def inference(
qr_code_content: str,
prompt: str,
negative_prompt: str,
guidance_scale: float = 7.5,
controlnet_conditioning_scale: float = 1.1,
strength: float = 0.9,
seed: int = -1,
sampler: str = "DPM++ Karras SDE",
):
if prompt is None or prompt == "":
raise gr.Error("Prompt is required")
if qr_code_content == "":
raise gr.Error("QR Code Content is required")
pipe.scheduler = SAMPLER_MAP[sampler](pipe.scheduler.config)
if seed == -1:
seed = random.randint(0, MAX_SEED)
# Use a sub-seed for additional randomness
subseed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed + subseed)
print("Generating QR Code from content")
qr = qrcode.QRCode(
version=1,
error_correction=qrcode.constants.ERROR_CORRECT_H,
box_size=16,
border=4,
)
qr.add_data(qr_code_content)
qr.make(fit=True)
qrcode_image = qr.make_image(fill_color="black", back_color="white")
qrcode_image = resize_for_condition_image(qrcode_image, 1024)
init_image = qrcode_image
out = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=init_image,
control_image=qrcode_image,
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
guidance_scale=float(guidance_scale),
generator=generator,
strength=float(strength),
num_inference_steps=30,
)
return out.images[0]
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
qr_code_content = gr.Textbox(
label="QR Code Content",
info="QR Code Content or URL",
value="",
)
prompt = gr.Textbox(
label="Prompt",
info="Prompt that guides the generation towards",
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="ugly, disfigured, low quality, blurry",
)
with gr.Accordion(
label="Advanced Parameters",
open=True,
):
controlnet_conditioning_scale = gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.01,
value=1.1,
label="Controlnet Conditioning Scale",
)
strength = gr.Slider(
minimum=0.0, maximum=1.0, step=0.01, value=0.9, label="Strength"
)
guidance_scale = gr.Slider(
minimum=0.0,
maximum=50.0,
step=0.25,
value=7.5,
label="Guidance Scale",
)
sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="DPM++ Karras SDE", label="Sampler")
seed = gr.Slider(
minimum=-1,
maximum=MAX_SEED,
step=1,
value=-1,
label="Seed",
randomize=True,
)
with gr.Row():
run_btn = gr.Button("Run")
with gr.Column():
result_image = gr.Image(label="Result Image")
run_btn.click(
inference,
inputs=[
qr_code_content,
prompt,
negative_prompt,
guidance_scale,
controlnet_conditioning_scale,
strength,
seed,
sampler,
],
outputs=[result_image],
)
demo.queue(max_size=20).launch(share=bool(os.environ.get("SHARE", False)))