File size: 5,807 Bytes
0a9785c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import torch
import gradio as gr
from PIL import Image
import qrcode
from pathlib import Path
import requests
import io
import os
import spaces
import random

from diffusers import (
    StableDiffusionXLControlNetPipeline,
    ControlNetModel,
    AutoencoderKL,
    DiffusionPipeline,
    DDIMScheduler,
    DPMSolverMultistepScheduler,
    DEISMultistepScheduler,
    HeunDiscreteScheduler,
    EulerDiscreteScheduler,
)

MAX_SEED = 2**32 - 1

# QR Code generation setup
qrcode_generator = qrcode.QRCode(
    version=1,
    error_correction=qrcode.ERROR_CORRECT_H,
    box_size=16,
    border=4,
)

# SDXL and ControlNet setup
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)

controlnet = ControlNetModel.from_pretrained(
    "AGCobra/1",
    torch_dtype=torch.float16
).to(device)

pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    vae=vae,
    controlnet=controlnet,
    torch_dtype=torch.float16,
    use_safetensors=True,
    variant="fp16",
).to(device)

# Sampler setup
SAMPLER_MAP = {
    "DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
    "DPM++ Karras": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True),
    "Heun": lambda config: HeunDiscreteScheduler.from_config(config),
    "Euler": lambda config: EulerDiscreteScheduler.from_config(config),
    "DDIM": lambda config: DDIMScheduler.from_config(config),
    "DEIS": lambda config: DEISMultistepScheduler.from_config(config),
}

def resize_for_condition_image(input_image: Image.Image, resolution: int):
    input_image = input_image.convert("RGB")
    W, H = input_image.size
    k = float(resolution) / min(H, W)
    H *= k
    W *= k
    H = int(round(H / 64.0)) * 64
    W = int(round(W / 64.0)) * 64
    img = input_image.resize((W, H), resample=Image.LANCZOS)
    return img

@spaces.GPU()
def inference(
    qr_code_content: str,
    prompt: str,
    negative_prompt: str,
    guidance_scale: float = 7.5,
    controlnet_conditioning_scale: float = 1.1,
    strength: float = 0.9,
    seed: int = -1,
    sampler: str = "DPM++ Karras SDE",
):
    if prompt is None or prompt == "":
        raise gr.Error("Prompt is required")

    if qr_code_content == "":
        raise gr.Error("QR Code Content is required")

    pipe.scheduler = SAMPLER_MAP[sampler](pipe.scheduler.config)

    if seed == -1:
        seed = random.randint(0, MAX_SEED)
    
    # Use a sub-seed for additional randomness
    subseed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(seed + subseed)

    print("Generating QR Code from content")
    qr = qrcode.QRCode(
        version=1,
        error_correction=qrcode.constants.ERROR_CORRECT_H,
        box_size=16,
        border=4,
    )
    qr.add_data(qr_code_content)
    qr.make(fit=True)

    qrcode_image = qr.make_image(fill_color="black", back_color="white")
    qrcode_image = resize_for_condition_image(qrcode_image, 1024)

    init_image = qrcode_image

    out = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        image=init_image,
        control_image=qrcode_image,
        controlnet_conditioning_scale=float(controlnet_conditioning_scale),
        guidance_scale=float(guidance_scale),
        generator=generator,
        strength=float(strength),
        num_inference_steps=30,
    )
    return out.images[0]

with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            qr_code_content = gr.Textbox(
                label="QR Code Content",
                info="QR Code Content or URL",
                value="",
            )

            prompt = gr.Textbox(
                label="Prompt",
                info="Prompt that guides the generation towards",
            )
            negative_prompt = gr.Textbox(
                label="Negative Prompt",
                value="ugly, disfigured, low quality, blurry",
            )

            with gr.Accordion(
                label="Advanced Parameters",
                open=True,
            ):
                controlnet_conditioning_scale = gr.Slider(
                    minimum=0.0,
                    maximum=2.0,
                    step=0.01,
                    value=1.1,
                    label="Controlnet Conditioning Scale",
                )
                strength = gr.Slider(
                    minimum=0.0, maximum=1.0, step=0.01, value=0.9, label="Strength"
                )
                guidance_scale = gr.Slider(
                    minimum=0.0,
                    maximum=50.0,
                    step=0.25,
                    value=7.5,
                    label="Guidance Scale",
                )
                sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="DPM++ Karras SDE", label="Sampler")
                seed = gr.Slider(
                    minimum=-1,
                    maximum=MAX_SEED,
                    step=1,
                    value=-1,
                    label="Seed",
                    randomize=True,
                )
            with gr.Row():
                run_btn = gr.Button("Run")
        with gr.Column():
            result_image = gr.Image(label="Result Image")
    run_btn.click(
        inference,
        inputs=[
            qr_code_content,
            prompt,
            negative_prompt,
            guidance_scale,
            controlnet_conditioning_scale,
            strength,
            seed,
            sampler,
        ],
        outputs=[result_image],
    )

demo.queue(max_size=20).launch(share=bool(os.environ.get("SHARE", False)))