File size: 5,807 Bytes
0a9785c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import torch
import gradio as gr
from PIL import Image
import qrcode
from pathlib import Path
import requests
import io
import os
import spaces
import random
from diffusers import (
StableDiffusionXLControlNetPipeline,
ControlNetModel,
AutoencoderKL,
DiffusionPipeline,
DDIMScheduler,
DPMSolverMultistepScheduler,
DEISMultistepScheduler,
HeunDiscreteScheduler,
EulerDiscreteScheduler,
)
MAX_SEED = 2**32 - 1
# QR Code generation setup
qrcode_generator = qrcode.QRCode(
version=1,
error_correction=qrcode.ERROR_CORRECT_H,
box_size=16,
border=4,
)
# SDXL and ControlNet setup
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
controlnet = ControlNetModel.from_pretrained(
"AGCobra/1",
torch_dtype=torch.float16
).to(device)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
vae=vae,
controlnet=controlnet,
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16",
).to(device)
# Sampler setup
SAMPLER_MAP = {
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
"DPM++ Karras": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True),
"Heun": lambda config: HeunDiscreteScheduler.from_config(config),
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
"DDIM": lambda config: DDIMScheduler.from_config(config),
"DEIS": lambda config: DEISMultistepScheduler.from_config(config),
}
def resize_for_condition_image(input_image: Image.Image, resolution: int):
input_image = input_image.convert("RGB")
W, H = input_image.size
k = float(resolution) / min(H, W)
H *= k
W *= k
H = int(round(H / 64.0)) * 64
W = int(round(W / 64.0)) * 64
img = input_image.resize((W, H), resample=Image.LANCZOS)
return img
@spaces.GPU()
def inference(
qr_code_content: str,
prompt: str,
negative_prompt: str,
guidance_scale: float = 7.5,
controlnet_conditioning_scale: float = 1.1,
strength: float = 0.9,
seed: int = -1,
sampler: str = "DPM++ Karras SDE",
):
if prompt is None or prompt == "":
raise gr.Error("Prompt is required")
if qr_code_content == "":
raise gr.Error("QR Code Content is required")
pipe.scheduler = SAMPLER_MAP[sampler](pipe.scheduler.config)
if seed == -1:
seed = random.randint(0, MAX_SEED)
# Use a sub-seed for additional randomness
subseed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed + subseed)
print("Generating QR Code from content")
qr = qrcode.QRCode(
version=1,
error_correction=qrcode.constants.ERROR_CORRECT_H,
box_size=16,
border=4,
)
qr.add_data(qr_code_content)
qr.make(fit=True)
qrcode_image = qr.make_image(fill_color="black", back_color="white")
qrcode_image = resize_for_condition_image(qrcode_image, 1024)
init_image = qrcode_image
out = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=init_image,
control_image=qrcode_image,
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
guidance_scale=float(guidance_scale),
generator=generator,
strength=float(strength),
num_inference_steps=30,
)
return out.images[0]
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
qr_code_content = gr.Textbox(
label="QR Code Content",
info="QR Code Content or URL",
value="",
)
prompt = gr.Textbox(
label="Prompt",
info="Prompt that guides the generation towards",
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="ugly, disfigured, low quality, blurry",
)
with gr.Accordion(
label="Advanced Parameters",
open=True,
):
controlnet_conditioning_scale = gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.01,
value=1.1,
label="Controlnet Conditioning Scale",
)
strength = gr.Slider(
minimum=0.0, maximum=1.0, step=0.01, value=0.9, label="Strength"
)
guidance_scale = gr.Slider(
minimum=0.0,
maximum=50.0,
step=0.25,
value=7.5,
label="Guidance Scale",
)
sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="DPM++ Karras SDE", label="Sampler")
seed = gr.Slider(
minimum=-1,
maximum=MAX_SEED,
step=1,
value=-1,
label="Seed",
randomize=True,
)
with gr.Row():
run_btn = gr.Button("Run")
with gr.Column():
result_image = gr.Image(label="Result Image")
run_btn.click(
inference,
inputs=[
qr_code_content,
prompt,
negative_prompt,
guidance_scale,
controlnet_conditioning_scale,
strength,
seed,
sampler,
],
outputs=[result_image],
)
demo.queue(max_size=20).launch(share=bool(os.environ.get("SHARE", False))) |