Spaces:
Sleeping
Sleeping
Update agent.py
#1
by
AC-Angelo93
- opened
agent.py
CHANGED
@@ -1,171 +1,160 @@
|
|
1 |
# agent.py
|
|
|
2 |
import os
|
3 |
-
#from supabase import create_client
|
4 |
-
from sentence_transformers import SentenceTransformer
|
5 |
-
from serpapi import GoogleSearch
|
6 |
import pandas as pd
|
7 |
import faiss
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
9 |
from langchain_core.language_models.llms import LLM
|
10 |
-
from langchain_core.
|
|
|
11 |
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
|
12 |
|
13 |
-
#
|
14 |
-
#
|
|
|
15 |
df = pd.read_csv("documents.csv")
|
16 |
DOCS = df["content"].tolist()
|
17 |
|
18 |
-
# 1b) Create an embedding model
|
19 |
EMBEDDER = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
|
20 |
-
|
21 |
-
# 1c) Compute embeddings (float32) and build FAISS index
|
22 |
EMBS = EMBEDDER.encode(DOCS, show_progress_bar=True).astype("float32")
|
23 |
INDEX = faiss.IndexFlatL2(EMBS.shape[1])
|
24 |
INDEX.add(EMBS)
|
25 |
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
#
|
28 |
-
|
29 |
-
|
30 |
-
EMBED_MODEL_ID = os.getenv("HF_EMBEDDING_MODEL")
|
31 |
-
|
32 |
-
|
33 |
-
#sb_client = create_client(SUPABASE_URL, SUPABASE_KEY)
|
34 |
-
#embedder = SentenceTransformer(EMBED_MODEL_ID)
|
35 |
-
|
36 |
-
# 1) Define tools
|
37 |
-
|
38 |
@tool
|
39 |
def calculator(expr: str) -> str:
|
40 |
-
"""Simple math via Python eval"""
|
41 |
try:
|
42 |
return str(eval(expr))
|
43 |
-
except
|
44 |
return "Error"
|
45 |
-
# e.g. search, vector_retrieval, etc.
|
46 |
-
# @tool
|
47 |
-
# def web_search(query:str) -> str:
|
48 |
-
# ...
|
49 |
-
#@tool
|
50 |
-
#def retrieve_docs(query: str, k: int = 3) -> str:
|
51 |
-
#"""
|
52 |
-
#Fetch tpo-k docs from Supabase vector store.
|
53 |
-
#Returns the concatenated text.
|
54 |
-
#"""
|
55 |
-
# --- embed the query
|
56 |
-
#q_emb = embedder.encode(query).tolist()
|
57 |
-
|
58 |
-
# --- query the embedding table
|
59 |
-
#response = (
|
60 |
-
# sb_client
|
61 |
-
# .rpc("match_documents", {"query_embedding": q_emb, "match_count": k})
|
62 |
-
# .execute()
|
63 |
-
# )
|
64 |
-
# rows = response.data
|
65 |
-
|
66 |
-
# ---- concatenate the content field
|
67 |
-
# docs = [row["content"] for row in rows]
|
68 |
-
# return "\n\n---\n\n".join(docs)
|
69 |
|
70 |
@tool
|
71 |
def retrieve_docs(query: str, k: int = 3) -> str:
|
72 |
-
"""
|
73 |
-
k-NN search over our in-memory FAISS index.
|
74 |
-
Returns the top-k documents concatenated.
|
75 |
-
"""
|
76 |
-
# 1) Embed the query
|
77 |
q_emb = EMBEDDER.encode([query]).astype("float32")
|
78 |
-
# 2) Search FAISS
|
79 |
D, I = INDEX.search(q_emb, k)
|
80 |
-
|
81 |
-
hits = [DOCS[i] for i in I[0]]
|
82 |
-
return "\n\n---\n\n".join(hits)
|
83 |
|
84 |
-
|
85 |
SERPAPI_KEY = os.getenv("SERPAPI_KEY")
|
86 |
-
# ---- web_search tool
|
87 |
@tool
|
88 |
def web_search(query: str, num_results: int = 5) -> str:
|
89 |
-
"""
|
90 |
-
|
91 |
-
|
92 |
-
"q": query,
|
93 |
-
"num": num_results,
|
94 |
-
"api_key": SERPAPI_KEY,
|
95 |
-
}
|
96 |
-
search = GoogleSearch(params)
|
97 |
-
results = search.get_dict().get("organic_results", [])
|
98 |
-
snippets = [r.get("snippet","")for r in results]
|
99 |
-
return "\n".join(f"- {s}" for s in snippets)
|
100 |
|
101 |
@tool
|
102 |
def wiki_search(query: str) -> str:
|
103 |
-
"""
|
104 |
-
Search Wikipedia for up to 2 pages matching 'query',
|
105 |
-
and return their contents.
|
106 |
-
"""
|
107 |
-
#load up to 2 pages
|
108 |
pages = WikipediaLoader(query=query, load_max_docs=2).load()
|
109 |
-
|
110 |
-
return "\n\n---\n\n".join(doc.page_content for doc in pages)
|
111 |
|
112 |
@tool
|
113 |
-
def arxiv_search(query:str) -> str:
|
114 |
-
"""
|
115 |
-
Search ArXiv for up to 3 abstracts matching 'query',
|
116 |
-
and return their first 1000 characters.
|
117 |
-
"""
|
118 |
papers = ArxivLoader(query=query, load_max_docs=3).load()
|
119 |
-
return "\n\n---\n\n".join(
|
120 |
-
|
121 |
-
|
122 |
-
#
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# agent.py
|
2 |
+
|
3 |
import os
|
|
|
|
|
|
|
4 |
import pandas as pd
|
5 |
import faiss
|
6 |
+
|
7 |
+
from sentence_transformers import SentenceTransformer
|
8 |
+
from serpapi import GoogleSearch
|
9 |
+
|
10 |
+
# 1οΈβ£ Switch Graph β StateGraph
|
11 |
+
from langgraph.graph import StateGraph
|
12 |
from langchain_core.language_models.llms import LLM
|
13 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
14 |
+
from langchain_core.tools import tool
|
15 |
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
|
16 |
|
17 |
+
# ββββββββββββββββ
|
18 |
+
# 2οΈβ£ Load & index your static FAISS docs
|
19 |
+
# ββββββββββββββββ
|
20 |
df = pd.read_csv("documents.csv")
|
21 |
DOCS = df["content"].tolist()
|
22 |
|
|
|
23 |
EMBEDDER = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
|
|
|
|
|
24 |
EMBS = EMBEDDER.encode(DOCS, show_progress_bar=True).astype("float32")
|
25 |
INDEX = faiss.IndexFlatL2(EMBS.shape[1])
|
26 |
INDEX.add(EMBS)
|
27 |
|
28 |
+
# ββββββββββββββββ
|
29 |
+
# 3οΈβ£ Read your system prompt
|
30 |
+
# ββββββββββββββββ
|
31 |
+
with open("system_prompt.txt","r",encoding="utf-8") as f:
|
32 |
+
SYSTEM_PROMPT = f.read().strip()
|
33 |
|
34 |
+
# ββββββββββββββββ
|
35 |
+
# 4οΈβ£ Define your tools (unchanged semantics)
|
36 |
+
# ββββββββββββββββ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
@tool
|
38 |
def calculator(expr: str) -> str:
|
|
|
39 |
try:
|
40 |
return str(eval(expr))
|
41 |
+
except:
|
42 |
return "Error"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
@tool
|
45 |
def retrieve_docs(query: str, k: int = 3) -> str:
|
|
|
|
|
|
|
|
|
|
|
46 |
q_emb = EMBEDDER.encode([query]).astype("float32")
|
|
|
47 |
D, I = INDEX.search(q_emb, k)
|
48 |
+
return "\n\n---\n\n".join(DOCS[i] for i in I[0])
|
|
|
|
|
49 |
|
|
|
50 |
SERPAPI_KEY = os.getenv("SERPAPI_KEY")
|
|
|
51 |
@tool
|
52 |
def web_search(query: str, num_results: int = 5) -> str:
|
53 |
+
params = {"engine":"google","q":query,"num":num_results,"api_key":SERPAPI_KEY}
|
54 |
+
res = GoogleSearch(params).get_dict().get("organic_results", [])
|
55 |
+
return "\n".join(f"- {r.get('snippet','')}" for r in res)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
@tool
|
58 |
def wiki_search(query: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
59 |
pages = WikipediaLoader(query=query, load_max_docs=2).load()
|
60 |
+
return "\n\n---\n\n".join(d.page_content for d in pages)
|
|
|
61 |
|
62 |
@tool
|
63 |
+
def arxiv_search(query: str) -> str:
|
|
|
|
|
|
|
|
|
64 |
papers = ArxivLoader(query=query, load_max_docs=3).load()
|
65 |
+
return "\n\n---\n\n".join(d.page_content[:1000] for d in papers)
|
66 |
+
|
67 |
+
|
68 |
+
# ββββββββββββββββ
|
69 |
+
# 5οΈβ£ Define your State schema
|
70 |
+
# ββββββββββββββββ
|
71 |
+
from typing import TypedDict, List
|
72 |
+
from langchain_core.messages import BaseMessage
|
73 |
+
|
74 |
+
class AgentState(TypedDict):
|
75 |
+
# Weβll carry a list of messages as our βchat historyβ
|
76 |
+
messages: List[BaseMessage]
|
77 |
+
|
78 |
+
|
79 |
+
# ββββββββββββββββ
|
80 |
+
# 6οΈβ£ Build the StateGraph
|
81 |
+
# ββββββββββββββββ
|
82 |
+
def build_graph(provider: str = "huggingface") -> StateGraph:
|
83 |
+
# Instantiate LLM
|
84 |
+
hf_token = os.getenv("HF_TOKEN")
|
85 |
+
if not hf_token:
|
86 |
+
raise ValueError("HF_TOKEN missing in env")
|
87 |
+
llm = LLM(provider=provider, token=hf_token, model="meta-llama/Llama-2-7b-chat-hf")
|
88 |
+
|
89 |
+
# 6.1) Node: init β seed system prompt
|
90 |
+
def init_node(_: AgentState) -> AgentState:
|
91 |
+
return {
|
92 |
+
"messages": [
|
93 |
+
SystemMessage(content=SYSTEM_PROMPT)
|
94 |
+
]
|
95 |
+
}
|
96 |
+
|
97 |
+
# 6.2) Node: human β append user question
|
98 |
+
def human_node(state: AgentState, question: str) -> AgentState:
|
99 |
+
state["messages"].append(HumanMessage(content=question))
|
100 |
+
return state
|
101 |
+
|
102 |
+
# 6.3) Node: assistant β call LLM on current messages
|
103 |
+
def assistant_node(state: AgentState) -> dict:
|
104 |
+
ai_msg = llm.invoke(state["messages"])
|
105 |
+
return {"messages": state["messages"] + [ai_msg]}
|
106 |
+
|
107 |
+
# 6.4) Optional: tool nodes (theyβll read last HumanMessage)
|
108 |
+
def make_tool_node(fn):
|
109 |
+
def tool_node(state: AgentState) -> dict:
|
110 |
+
# fetch the latest human query
|
111 |
+
last_query = state["messages"][-1].content
|
112 |
+
result = fn(last_query)
|
113 |
+
# append the toolβs output as if from system/Human
|
114 |
+
state["messages"].append(HumanMessage(content=result))
|
115 |
+
return {"messages": state["messages"]}
|
116 |
+
return tool_node
|
117 |
+
|
118 |
+
# Instantiate nodes for each tool
|
119 |
+
calc_node = make_tool_node(calculator)
|
120 |
+
retrieve_node = make_tool_node(retrieve_docs)
|
121 |
+
web_node = make_tool_node(web_search)
|
122 |
+
wiki_node = make_tool_node(wiki_search)
|
123 |
+
arxiv_node = make_tool_node(arxiv_search)
|
124 |
+
|
125 |
+
# 6.5) Build the graph
|
126 |
+
g = StateGraph(AgentState)
|
127 |
+
|
128 |
+
# Register nodes
|
129 |
+
g.add_node("init", init_node)
|
130 |
+
g.add_node("human", human_node)
|
131 |
+
g.add_node("assistant", assistant_node)
|
132 |
+
g.add_node("calc", calc_node)
|
133 |
+
g.add_node("retrieve", retrieve_node)
|
134 |
+
g.add_node("web", web_node)
|
135 |
+
g.add_node("wiki", wiki_node)
|
136 |
+
g.add_node("arxiv", arxiv_node)
|
137 |
+
|
138 |
+
# Wire up edges
|
139 |
+
from langgraph.graph import END
|
140 |
+
g.set_entry_point("init")
|
141 |
+
# init β human (placeholder: weβll inject the actual question at runtime)
|
142 |
+
g.add_edge("init", "human")
|
143 |
+
# human β assistant
|
144 |
+
g.add_edge("human", "assistant")
|
145 |
+
# assistant β tool nodes (conditional on tool calls)
|
146 |
+
g.add_edge("assistant", "calc")
|
147 |
+
g.add_edge("assistant", "retrieve")
|
148 |
+
g.add_edge("assistant", "web")
|
149 |
+
g.add_edge("assistant", "wiki")
|
150 |
+
g.add_edge("assistant", "arxiv")
|
151 |
+
# each tool returns back into assistant for followβup
|
152 |
+
g.add_edge("calc", "assistant")
|
153 |
+
g.add_edge("retrieve", "assistant")
|
154 |
+
g.add_edge("web", "assistant")
|
155 |
+
g.add_edge("wiki", "assistant")
|
156 |
+
g.add_edge("arxiv", "assistant")
|
157 |
+
# and finally assistant β END when done
|
158 |
+
g.add_edge("assistant", END)
|
159 |
+
|
160 |
+
return g.compile()
|