MotionShop2 / app.py
阿灰
update oss bucket
a8dcb7f
import gradio as gr
import requests
import os
import time
import json
from datetime import datetime
import oss2
import cv2
import uuid
from pathlib import Path
import decord
from gradio.utils import get_cache_folder
cache_version = 20250325
dashscope_api_key = os.getenv("API_KEY","")
class Examples(gr.helpers.Examples):
def __init__(self, *args, directory_name=None, **kwargs):
super().__init__(*args, **kwargs, _initiated_directly=False)
if directory_name is not None:
self.cached_folder = get_cache_folder() / directory_name
self.cached_file = Path(self.cached_folder) / "log.csv"
self.create()
def upload_to_oss(local_file_path, remote_file_path, expire_time=3600):
remote_url = "motionshop2/%s/%s" %(datetime.now().strftime("%Y%m%d"), remote_file_path)
for i in range(5):
try:
from oss2.credentials import EnvironmentVariableCredentialsProvider
auth = oss2.ProviderAuth(EnvironmentVariableCredentialsProvider())
bucket = oss2.Bucket(auth, 'oss-us-east-1.aliyuncs.com', 'huggingface-motionshop')
bucket.put_object_from_file(key=remote_url, filename=local_file_path)
break
except Exception as e:
if i < 4: # If this is not the last retry
time.sleep(2) # Wait for 2 second before next retry
continue
else: # If this is the last retry and it still fails
raise e
return bucket.sign_url('GET', remote_url, expire_time)
def get_url(filepath):
filename = os.path.basename(filepath)
remote_file_path = "%s_%s" %(uuid.uuid4(), filename)
return upload_to_oss(filepath, remote_file_path)
def online_detect(filepath):
url = "https://poc-dashscope.aliyuncs.com/api/v1/services/default/default/default"
headers = {
"Content-Type": "application/json",
"Authorization": "Bearer {}".format(dashscope_api_key)
}
data = {
"model": "pre-motionshop-detect-gradio",
"input": {
"video_url": filepath
},
"parameters": {
"threshold": 0.4,
"min_area_ratio": 0.001
}
}
print("Call detect api, params: " + json.dumps(data))
query_result_request = requests.post(
url,
json=data,
headers=headers
)
print("Detect api returned: " + query_result_request.text)
return json.loads(query_result_request.text)
def online_render(filepath, frame_id, bbox, replacement_ids, cache_url=None, model="pre-motionshop-render-gradio"):
url = "https://poc-dashscope.aliyuncs.com/api/v1/services/async-default/async-default/async-default"
headers = {
"Content-Type": "application/json",
"Authorization": "Bearer {}".format(dashscope_api_key),
"X-DashScope-Async": "enable"
}
data = {
"model": model,
# "model": "pre-motionshop-render-gradio",
"input": {
"video_url": filepath,
"frame_index": frame_id,
"bbox": bbox,
"replacement_id": replacement_ids
},
"parameters": {
}
}
if cache_url is not None:
data["input"]["cache_url"] = cache_url
print("Call render video api with params: " + json.dumps(data))
query_result_request = requests.post(
url,
json=data,
headers=headers
)
print("Render video api returned: " + query_result_request.text)
return json.loads(query_result_request.text)
def get_async_result(task_id):
while True:
result = requests.post(
"https://poc-dashscope.aliyuncs.com/api/v1/tasks/%s" %task_id,
headers={
"Authorization": "Bearer {}".format(dashscope_api_key),
}
)
result = json.loads(result.text)
if "output" in result and result["output"]["task_status"] in ["SUCCEEDED", "FAILED"]:
break
time.sleep(1)
return result
def save_video_cv2(vid, resize_video_input, resize_h, resize_w, fps):
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter(resize_video_input, fourcc, fps, (resize_w, resize_h))
for idx in range(len(vid)):
frame = vid[idx].asnumpy()[:,:,::-1]
frame = cv2.resize(frame,(resize_w, resize_h))
out.write(frame)
out.release()
def detect_human(video_input):
# print(video_input)
video_input_basename = os.path.basename(video_input)
resize_video_input = os.path.join(os.path.dirname(video_input), video_input_basename.split(".")[0]+"_resize."+video_input_basename.split(".")[-1])
vid = decord.VideoReader(video_input)
fps = vid.get_avg_fps()
H, W, C = vid[0].shape
if H > 1280 or W > 1280:
if H > W:
resize_h, resize_w = 1280, int(W*1280/H)
else:
resize_h, resize_w = int(H*1280/W), 1280
save_video_cv2(vid, resize_video_input, resize_h, resize_w, fps)
new_video_input = resize_video_input
else:
# resize_h, resize_w = H, W
new_video_input = video_input
video_url = get_url(new_video_input)
detect_result = online_detect(video_url)
check_result = "output" in detect_result
select_frame_index = detect_result["output"]["frame_index"]
boxes = detect_result["output"]["bbox"][:3]
print("Detected %d characters" %len(boxes))
cap = cv2.VideoCapture(new_video_input)
cap.set(cv2.CAP_PROP_POS_FRAMES, select_frame_index)
_, box_image = cap.read()
box_image = cv2.cvtColor(box_image, cv2.COLOR_BGR2RGB)
width, height = box_image.shape[1], box_image.shape[0]
for i, box in enumerate(boxes):
box = [
(box[0] - box[2] / 2) * width, (box[1] - box[3] / 2) * height,
(box[0] + box[2] / 2) * width, (box[1] + box[3] / 2) * height]
# box_image = cv2.rectangle(box_image, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
if i == 0:
box_image = cv2.rectangle(box_image, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (255, 0, 0), 2)
if i == 1:
box_image = cv2.rectangle(box_image, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (0, 255, 0), 2)
if i == 2:
box_image = cv2.rectangle(box_image, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (0, 0, 255), 2)
# check_result, select_frame_index, box, box_image, _ = object_detector.getGroundingInfo(video_input)
video_state = {
"check_result": check_result,
"select_frame_index": select_frame_index,
"box": boxes,
"replace_ids": [],
"image_to_3d_tasks": {},
"video_url": video_url,
"video_path": new_video_input
}
return video_state, box_image, gr.update(visible=True), gr.update(visible=False)
def predict(video_state, first_image, second_image, third_image):
if len(video_state["box"]) == 0:
return None, "No human detected, please use a video with clear human"
print("images:", first_image, second_image, third_image)
tasks = []
boxes = []
if first_image is not None and len(video_state["box"]) >= 1:
tasks.append(image_to_3d(first_image))
boxes.append(video_state["box"][0])
if second_image is not None and len(video_state["box"]) >= 2:
tasks.append(image_to_3d(second_image))
boxes.append(video_state["box"][1])
if third_image is not None and len(video_state["box"]) >= 3:
tasks.append(image_to_3d(third_image))
boxes.append(video_state["box"][2])
if len(tasks) == 0:
return None, "Please upload at least one character photo for replacement."
ids = []
for t in tasks:
try:
image_to_3d_result = get_async_result(t)
print("image to 3d finished", image_to_3d_result)
ids.append(image_to_3d_result["output"]["ply_url"])
except Exception as e:
print(e)
return None, "Error in 3d model generation, please check the uploaded image"
if (video_state["check_result"]):
try:
taskid = online_render(video_state["video_url"], video_state["select_frame_index"], boxes, ids, None)["output"]["task_id"]
task_output = get_async_result(taskid)
print("Video synthesis completed, api returned: " + json.dumps(task_output))
video_url = task_output["output"]["synthesis_video_url"]
return video_url, "Processing Success"
except Exception as e:
print(e)
return None, "Error in video synthesis, please change the material and try again"
else:
return None, "Error in human detection, please use a video with clear human"
def online_img_to_3d(img_url):
url = "https://poc-dashscope.aliyuncs.com/api/v1/services/async-default/async-default/async-default"
headers = {
"Content-Type": "application/json",
"Authorization": "Bearer {}".format(dashscope_api_key),
"X-DashScope-Async": "enable"
}
data = {
# "model": "pre-Human3DGS",
"model": "pre-image-to-3d-gradio",
# "model": "pre-motionshop-render-h20-test",
"input": {
"image_url": img_url,
},
"parameters": {
}
}
query_result_request = requests.post(
url,
json=data,
headers=headers
)
print("Call image to 3d api, params: " + json.dumps(data))
return json.loads(query_result_request.text)
def image_to_3d(image_path):
url = get_url(image_path)
task_send_result = online_img_to_3d(url)
image_to_3d_task_id = task_send_result["output"]["task_id"]
return image_to_3d_task_id
def gradio_demo():
with gr.Blocks() as iface:
"""
state for
"""
video_state = gr.State(
{
"check_result": False,
"select_frame_index": 0,
"box": [],
"replace_ids": [],
"image_to_3d_tasks": {},
"video_url": "",
"video_path": ""
}
)
gr.HTML(
"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<div>
<h1 >Motionshop2</h1>
<div style="display: flex; justify-content: center; align-items: center; text-align: center; margin: 20px; gap: 10px;">
<a class="flex-item" href="https://aigc3d.github.io/motionshop-2" target="_blank">
<img src="https://img.shields.io/badge/Project_Page-Motionshop2-green.svg" alt="Project Page">
</a>
<a class="flex-item" href="https://lingtengqiu.github.io/LHM/" target="_blank">
<img src="https://img.shields.io/badge/Project_Page-LHM-green.svg" alt="Project Page">
</a>
<a class="flex-item" href="https://lixiaowen-xw.github.io/DiffuEraser-page/" target="_blank">
<img src="https://img.shields.io/badge/Project_Page-DiffuEraser-green.svg" alt="Project Page">
</a>
</div>
</div>
</div>
"""
)
gr.Markdown("""<h4 style="color: green;"> 1. Choose or upload a video (duration<=15s, resolution<=720p)</h4>""")
with gr.Row():
with gr.Column():
gr.HTML("""
<style>
#input_video video, #output_video video {
height: 480px !important;
object-fit: contain;
}
#template_frame img {
height: 480px !important;
object-fit: contain;
}
</style>
""")
video_input = gr.Video(elem_id="input_video")
template_frame = gr.Image(type="pil",interactive=True, elem_id="template_frame", visible=False)
Examples(
fn=detect_human,
examples=sorted([
os.path.join("files", "example_videos", name)
for name in os.listdir(os.path.join("files", "example_videos"))
]),
run_on_click=True,
inputs=[video_input],
outputs=[video_state, template_frame, template_frame, video_input],
directory_name="examples_videos",
cache_examples=False,
)
gr.Markdown("""<h4 style="color: green;"> 2.Choose or upload images to replace </h4>""")
with gr.Row():
with gr.Column():
gr.Markdown("Replace the character in the red box with...")
with gr.Row():
first_image = gr.Image(type="filepath",interactive=True, elem_id="first_image", visible=True, height=480, width=270)
first_example = gr.Examples(
examples=sorted([os.path.join("files", "example_images", name) for name in os.listdir(os.path.join("files", "example_images"))]),
inputs=[first_image],
examples_per_page=6
)
with gr.Column():
gr.Markdown("Replace the character in the green box with...")
with gr.Row():
second_image = gr.Image(type="filepath",interactive=True, elem_id="second_image", visible=True, height=480, width=270)
second_example = gr.Examples(
examples=sorted([os.path.join("files", "example_images", name) for name in os.listdir(os.path.join("files", "example_images"))]),
inputs=[second_image],
examples_per_page=6
)
with gr.Column():
gr.Markdown("Replace the character in the blue box with...")
with gr.Row():
third_image = gr.Image(type="filepath",interactive=True, elem_id="third_image", visible=True, height=480, width=270)
third_example = gr.Examples(
examples=sorted([os.path.join("files", "example_images", name) for name in os.listdir(os.path.join("files", "example_images"))]),
inputs=[third_image],
examples_per_page=6
)
gr.Markdown("""<h4 style="color: green;"> 3.Click Start (each generation may take 3 minutes due to the use of SOTA video inpainting and pose estimation methods)</h4>""")
with gr.Row():
with gr.Column():
motion_shop_predict_button = gr.Button(value="Start", variant="primary")
video_output = gr.Video(elem_id="output_video")
error_message = gr.Textbox(label="Processing Status", visible=True, interactive=False)
video_input.upload(
fn=detect_human,
inputs=[
video_input
],
outputs=[video_state, template_frame, template_frame, video_input],
)
motion_shop_predict_button.click(
fn=predict,
inputs=[video_state, first_image, second_image, third_image],
outputs=[video_output, error_message]
)
# clear input
template_frame.clear(
lambda: (
{
"check_result": False,
"select_frame_index": 0,
"box": [],
"replace_ids": [],
"image_to_3d_tasks": {},
"video_url": "",
"video_path": ""
},
None,
None,
None,
gr.update(visible=True),
gr.update(visible=False),
gr.update(value=None),
gr.update(value=None),
gr.update(value=None),
gr.update(value="")
),
[],
[
video_state,
video_output,
template_frame,
video_input,
video_input,
template_frame,
first_image,
second_image,
third_image,
error_message
],
queue=False,
show_progress=False)
# print("username:", uuid_output_field)
# set example
# gr.Markdown("## Examples")
# gr.Examples(
# examples=[os.path.join(os.path.dirname(__file__), "./test_sample/", test_sample) for test_sample in ["test-sample8.mp4","test-sample4.mp4", \
# "test-sample2.mp4","test-sample13.mp4"]],
# fn=run_example,
# inputs=[
# e.s video_input
# ],
# outputs=[video_input],
# # cache_examples=True,
# )
iface.queue(default_concurrency_limit=200)
iface.launch(debug=False, max_threads=10, server_name="0.0.0.0")
if __name__=="__main__":
gradio_demo()
# iface.launch(debug=True, enable_queue=True)