File size: 17,270 Bytes
9b9835e
 
 
 
 
 
 
 
 
a8dcb7f
9b9835e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8dcb7f
9b9835e
 
 
 
a8dcb7f
9b9835e
 
 
 
 
 
 
 
 
 
 
 
a8dcb7f
9b9835e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5022a2d
 
9b9835e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5022a2d
9b9835e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import gradio as gr

import requests
import os
import time
import json
from datetime import datetime
import oss2
import cv2
import uuid
from pathlib import Path
import decord
from gradio.utils import get_cache_folder

cache_version = 20250325
dashscope_api_key = os.getenv("API_KEY","")

class Examples(gr.helpers.Examples):
    def __init__(self, *args, directory_name=None, **kwargs):
        super().__init__(*args, **kwargs, _initiated_directly=False)
        if directory_name is not None:
            self.cached_folder = get_cache_folder() / directory_name
            self.cached_file = Path(self.cached_folder) / "log.csv"
        self.create()

def upload_to_oss(local_file_path, remote_file_path, expire_time=3600):
    remote_url = "motionshop2/%s/%s" %(datetime.now().strftime("%Y%m%d"), remote_file_path)
    for i in range(5):
        try:
            from oss2.credentials import EnvironmentVariableCredentialsProvider
            auth = oss2.ProviderAuth(EnvironmentVariableCredentialsProvider())
            bucket = oss2.Bucket(auth, 'oss-us-east-1.aliyuncs.com', 'huggingface-motionshop')
            bucket.put_object_from_file(key=remote_url, filename=local_file_path)
            break
        except Exception as e:
            if i < 4:  # If this is not the last retry
                time.sleep(2)  # Wait for 2 second before next retry
                continue
            else:  # If this is the last retry and it still fails
                raise e
    return bucket.sign_url('GET', remote_url, expire_time)

def get_url(filepath):
    filename = os.path.basename(filepath)
    remote_file_path = "%s_%s" %(uuid.uuid4(), filename)
    return upload_to_oss(filepath, remote_file_path)

def online_detect(filepath):
    url = "https://poc-dashscope.aliyuncs.com/api/v1/services/default/default/default"
    headers = {
        "Content-Type": "application/json",
        "Authorization": "Bearer {}".format(dashscope_api_key)
    }
    data = {
        "model": "pre-motionshop-detect-gradio",
        "input": {
            "video_url": filepath
        },
        "parameters": {
            "threshold": 0.4,
            "min_area_ratio": 0.001
        }
    }

    print("Call detect api, params: " + json.dumps(data))
    query_result_request = requests.post(
        url,
        json=data,
        headers=headers
    )
    print("Detect api returned: " + query_result_request.text)
    return json.loads(query_result_request.text)

def online_render(filepath, frame_id, bbox, replacement_ids, cache_url=None, model="pre-motionshop-render-gradio"):
    url = "https://poc-dashscope.aliyuncs.com/api/v1/services/async-default/async-default/async-default"
    headers = {
        "Content-Type": "application/json",
        "Authorization": "Bearer {}".format(dashscope_api_key),
        "X-DashScope-Async": "enable"
    }
    data = {
        "model": model,
        # "model": "pre-motionshop-render-gradio",
        "input": {
            "video_url": filepath,
            "frame_index": frame_id,
            "bbox": bbox,
            "replacement_id": replacement_ids
        },
        "parameters": {
        }
    }

    if cache_url is not None:
        data["input"]["cache_url"] = cache_url

    print("Call render video api with params: " + json.dumps(data))
    query_result_request = requests.post(
        url,
        json=data,
        headers=headers
    )
    print("Render video api returned: " + query_result_request.text)
    return json.loads(query_result_request.text)

def get_async_result(task_id):
    while True:
        result = requests.post(
            "https://poc-dashscope.aliyuncs.com/api/v1/tasks/%s" %task_id,
            headers={
                "Authorization": "Bearer {}".format(dashscope_api_key),
            }
        )
        result = json.loads(result.text)
        if "output" in result and result["output"]["task_status"] in ["SUCCEEDED", "FAILED"]:
            break
        time.sleep(1)
    return result

def save_video_cv2(vid, resize_video_input, resize_h, resize_w, fps):
    fourcc = cv2.VideoWriter_fourcc(*'XVID')
    out = cv2.VideoWriter(resize_video_input, fourcc, fps, (resize_w, resize_h))
    for idx in range(len(vid)):
        frame = vid[idx].asnumpy()[:,:,::-1]
        frame = cv2.resize(frame,(resize_w, resize_h))
        out.write(frame)
    out.release()

def detect_human(video_input):
    # print(video_input)
    video_input_basename = os.path.basename(video_input)
    resize_video_input = os.path.join(os.path.dirname(video_input), video_input_basename.split(".")[0]+"_resize."+video_input_basename.split(".")[-1])
    vid = decord.VideoReader(video_input)
    fps = vid.get_avg_fps()
    H, W, C = vid[0].shape
    if H > 1280 or W > 1280:
        if H > W:
            resize_h, resize_w = 1280, int(W*1280/H)
        else:
            resize_h, resize_w = int(H*1280/W), 1280
        save_video_cv2(vid, resize_video_input, resize_h, resize_w, fps)
        new_video_input = resize_video_input
    else:
        # resize_h, resize_w = H, W
        new_video_input = video_input
    video_url = get_url(new_video_input)
    detect_result = online_detect(video_url)
    check_result = "output" in detect_result
    select_frame_index = detect_result["output"]["frame_index"]
    boxes = detect_result["output"]["bbox"][:3]
    print("Detected %d characters" %len(boxes))

    cap = cv2.VideoCapture(new_video_input)
    cap.set(cv2.CAP_PROP_POS_FRAMES, select_frame_index)
    _, box_image = cap.read()
    box_image = cv2.cvtColor(box_image, cv2.COLOR_BGR2RGB)

    width, height = box_image.shape[1], box_image.shape[0]

    for i, box in enumerate(boxes):
        box = [
            (box[0] - box[2] / 2) * width, (box[1] - box[3] / 2) * height,
            (box[0] + box[2] / 2) * width, (box[1] + box[3] / 2) * height]
        # box_image = cv2.rectangle(box_image, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
        if i == 0:
            box_image = cv2.rectangle(box_image, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (255, 0, 0), 2)
        if i == 1:
            box_image = cv2.rectangle(box_image, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (0, 255, 0), 2)
        if i == 2:
            box_image = cv2.rectangle(box_image, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (0, 0, 255), 2)

    # check_result, select_frame_index, box, box_image, _ = object_detector.getGroundingInfo(video_input)
    video_state = {
        "check_result": check_result,
        "select_frame_index": select_frame_index,
        "box": boxes,
        "replace_ids": [],
        "image_to_3d_tasks": {},
        "video_url": video_url,
        "video_path": new_video_input
    }
    return video_state, box_image, gr.update(visible=True), gr.update(visible=False)

def predict(video_state, first_image, second_image, third_image):
    if len(video_state["box"]) == 0:
        return None, "No human detected, please use a video with clear human"

    print("images:", first_image, second_image, third_image)

    tasks = []
    boxes = []
    if first_image is not None and len(video_state["box"]) >= 1:
        tasks.append(image_to_3d(first_image))
        boxes.append(video_state["box"][0])

    if second_image is not None and len(video_state["box"]) >= 2:
        tasks.append(image_to_3d(second_image))
        boxes.append(video_state["box"][1])

    if third_image is not None and len(video_state["box"]) >= 3:
        tasks.append(image_to_3d(third_image))
        boxes.append(video_state["box"][2])

    if len(tasks) == 0:
        return None, "Please upload at least one character photo for replacement."

    ids = []
    for t in tasks:
        try:
            image_to_3d_result = get_async_result(t)
            print("image to 3d finished", image_to_3d_result)
            ids.append(image_to_3d_result["output"]["ply_url"])
        except Exception as e:
            print(e)
            return None, "Error in 3d model generation, please check the uploaded image"

    if (video_state["check_result"]):
        try:
            taskid = online_render(video_state["video_url"], video_state["select_frame_index"], boxes, ids, None)["output"]["task_id"]
            task_output = get_async_result(taskid)
            print("Video synthesis completed, api returned: " + json.dumps(task_output))
            video_url = task_output["output"]["synthesis_video_url"]
            return video_url, "Processing Success"
        except Exception as e:
            print(e)
            return None, "Error in video synthesis, please change the material and try again"
    else:
        return None, "Error in human detection, please use a video with clear human"

def online_img_to_3d(img_url):
    url = "https://poc-dashscope.aliyuncs.com/api/v1/services/async-default/async-default/async-default"
    headers = {
        "Content-Type": "application/json",
        "Authorization": "Bearer {}".format(dashscope_api_key),
        "X-DashScope-Async": "enable"
    }
    data = {
        # "model": "pre-Human3DGS",
        "model": "pre-image-to-3d-gradio",
        # "model": "pre-motionshop-render-h20-test",
        "input": {
            "image_url": img_url,
        },
        "parameters": {
        }
    }

    query_result_request = requests.post(
        url,
        json=data,
        headers=headers
    )
    print("Call image to 3d api, params: " + json.dumps(data))
    return json.loads(query_result_request.text)

def image_to_3d(image_path):
    url = get_url(image_path)
    task_send_result = online_img_to_3d(url)
    image_to_3d_task_id = task_send_result["output"]["task_id"]
    return image_to_3d_task_id

def gradio_demo():
    with gr.Blocks() as iface:
        """
            state for
        """

        video_state = gr.State(
            {
                "check_result": False,
                "select_frame_index": 0,
                "box": [],
                "replace_ids": [],
                "image_to_3d_tasks": {},
                "video_url": "",
                "video_path": ""
            }
        )

        gr.HTML(
            """
            <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
            <div>
                <h1 >Motionshop2</h1>
                <div style="display: flex; justify-content: center; align-items: center; text-align: center; margin: 20px; gap: 10px;">
                    <a class="flex-item" href="https://aigc3d.github.io/motionshop-2" target="_blank">
                        <img src="https://img.shields.io/badge/Project_Page-Motionshop2-green.svg" alt="Project Page">
                    </a>
                    <a class="flex-item" href="https://lingtengqiu.github.io/LHM/" target="_blank">
                        <img src="https://img.shields.io/badge/Project_Page-LHM-green.svg" alt="Project Page">
                    </a>
                    <a class="flex-item" href="https://lixiaowen-xw.github.io/DiffuEraser-page/" target="_blank">
                        <img src="https://img.shields.io/badge/Project_Page-DiffuEraser-green.svg" alt="Project Page">
                    </a>
                </div>
            </div>
            </div>
            """
        )

        gr.Markdown("""<h4 style="color: green;"> 1. Choose or upload a video (duration<=15s, resolution<=720p)</h4>""")
        with gr.Row():
            with gr.Column():
                gr.HTML("""
                <style>
                #input_video video, #output_video video {
                    height: 480px !important;
                    object-fit: contain;
                }
                #template_frame img {
                    height: 480px !important;
                    object-fit: contain;
                }
                </style>
                """)
                video_input = gr.Video(elem_id="input_video")
                template_frame = gr.Image(type="pil",interactive=True, elem_id="template_frame", visible=False)
                Examples(
                    fn=detect_human,
                    examples=sorted([
                        os.path.join("files", "example_videos", name)
                        for name in os.listdir(os.path.join("files", "example_videos"))
                    ]),
                    run_on_click=True,
                    inputs=[video_input],
                    outputs=[video_state, template_frame, template_frame, video_input],
                    directory_name="examples_videos",
                    cache_examples=False,
                )

        gr.Markdown("""<h4 style="color: green;"> 2.Choose or upload images to replace </h4>""")
        with gr.Row():
            with gr.Column():
                gr.Markdown("Replace the character in the red box with...")
                with gr.Row():
                    first_image = gr.Image(type="filepath",interactive=True, elem_id="first_image", visible=True, height=480, width=270)
                    first_example = gr.Examples(
                        examples=sorted([os.path.join("files", "example_images", name) for name in os.listdir(os.path.join("files", "example_images"))]),
                        inputs=[first_image],
                        examples_per_page=6
                    )
            with gr.Column():
                gr.Markdown("Replace the character in the green box with...")
                with gr.Row():
                    second_image = gr.Image(type="filepath",interactive=True, elem_id="second_image", visible=True, height=480, width=270)
                    second_example = gr.Examples(
                        examples=sorted([os.path.join("files", "example_images", name) for name in os.listdir(os.path.join("files", "example_images"))]),
                        inputs=[second_image],
                        examples_per_page=6
                    )
            with gr.Column():
                gr.Markdown("Replace the character in the blue box with...")
                with gr.Row():
                    third_image = gr.Image(type="filepath",interactive=True, elem_id="third_image", visible=True, height=480, width=270)
                    third_example = gr.Examples(
                        examples=sorted([os.path.join("files", "example_images", name) for name in os.listdir(os.path.join("files", "example_images"))]),
                        inputs=[third_image],
                        examples_per_page=6
                    )

        gr.Markdown("""<h4 style="color: green;"> 3.Click Start (each generation may take 3 minutes due to the use of SOTA video inpainting and pose estimation methods)</h4>""")
        with gr.Row():
            with gr.Column():
                motion_shop_predict_button = gr.Button(value="Start", variant="primary")
                video_output = gr.Video(elem_id="output_video")
                error_message = gr.Textbox(label="Processing Status", visible=True, interactive=False)

        video_input.upload(
            fn=detect_human,
            inputs=[
                video_input
            ],
            outputs=[video_state, template_frame, template_frame, video_input],
        )

        motion_shop_predict_button.click(
            fn=predict,
            inputs=[video_state, first_image, second_image, third_image],
            outputs=[video_output, error_message]
        )

        # clear input
        template_frame.clear(
            lambda: (
            {
                "check_result": False,
                "select_frame_index": 0,
                "box": [],
                "replace_ids": [],
                "image_to_3d_tasks": {},
                "video_url": "",
                "video_path": ""
            },
            None,
            None,
            None,
            gr.update(visible=True),
            gr.update(visible=False),
            gr.update(value=None),
            gr.update(value=None),
            gr.update(value=None),
            gr.update(value="")
            ),
            [],
            [
                video_state,
                video_output,
                template_frame,
                video_input,
                video_input,
                template_frame,
                first_image,
                second_image,
                third_image,
                error_message
            ],
            queue=False,
            show_progress=False)

        # print("username:", uuid_output_field)
        # set example
        # gr.Markdown("##  Examples")
        # gr.Examples(
        #     examples=[os.path.join(os.path.dirname(__file__), "./test_sample/", test_sample) for test_sample in ["test-sample8.mp4","test-sample4.mp4", \
        #                                                                                                          "test-sample2.mp4","test-sample13.mp4"]],
        #     fn=run_example,
        #     inputs=[
        #  e.s       video_input
        #     ],
        #     outputs=[video_input],
        #     # cache_examples=True,
        # )

    iface.queue(default_concurrency_limit=200)
    iface.launch(debug=False, max_threads=10, server_name="0.0.0.0")

if __name__=="__main__":
    gradio_demo()

# iface.launch(debug=True, enable_queue=True)