Spaces:
Runtime error
Runtime error
import os | |
import json | |
import argparse | |
import torch | |
import pandas as pd | |
from tqdm import tqdm | |
from esm.models.vqvae import StructureTokenEncoder | |
from get_esm3_structure_seq import get_esm3_structure_seq | |
from get_foldseek_structure_seq import get_foldseek_structure_seq | |
from get_secondary_structure_seq import get_secondary_structure_seq | |
from get_prosst_str_token import get_prosst_token | |
# ignore the warning | |
import warnings | |
warnings.filterwarnings("ignore") | |
def ESM3_structure_encoder_v0(device: torch.device | str = "cpu"): | |
model = ( | |
StructureTokenEncoder( | |
d_model=1024, n_heads=1, v_heads=128, n_layers=2, d_out=128, n_codes=4096 | |
) | |
.to(device) | |
.eval() | |
) | |
state_dict = torch.load( | |
"./src/data/weight/esm3_structure_encoder_v0.pth", map_location=device | |
) | |
model.load_state_dict(state_dict) | |
return model | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--pdb_dir", type=str, default='dataset/sesadapter/DeepET/esmfold_pdb') | |
parser.add_argument("--pdb_file", type=str, default=None) | |
parser.add_argument("--out_dir", type=str, default='dataset/sesadapter/DeepET') | |
parser.add_argument("--merge_into", type=str, default='csv', choices=['json', 'csv']) | |
parser.add_argument("--save_intermediate", action='store_true') | |
args = parser.parse_args() | |
device = "cuda:0" | |
esm3_encoder = ESM3_structure_encoder_v0(device) | |
if args.pdb_dir is not None: | |
dir_name = os.path.basename(args.pdb_dir) | |
pdb_files = os.listdir(args.pdb_dir) | |
ss_results, esm3_results = [], [] | |
for pdb_file in tqdm(pdb_files): | |
ss_result, error = get_secondary_structure_seq(os.path.join(args.pdb_dir, pdb_file)) | |
if error is not None: | |
print(error) | |
continue | |
ss_results.append(ss_result) | |
esm3_result = get_esm3_structure_seq(os.path.join(args.pdb_dir, pdb_file), esm3_encoder, device) | |
esm3_results.append(esm3_result) | |
# clear cuda cache | |
torch.cuda.empty_cache() | |
with open(os.path.join(args.out_dir, f"{dir_name}_ss.json"), "w") as f: | |
f.write("\n".join([json.dumps(r) for r in ss_results])) | |
with open(os.path.join(args.out_dir, f"{dir_name}_esm3.json"), "w") as f: | |
f.write("\n".join([json.dumps(r) for r in esm3_results])) | |
fs_results = get_foldseek_structure_seq(args.pdb_dir) | |
with open(os.path.join(args.out_dir, f"{dir_name}_fs.json"), "w") as f: | |
f.write("\n".join([json.dumps(r) for r in fs_results])) | |
prosst_tokens = get_prosst_token(args.pdb_dir) | |
with open(os.path.join(args.out_dir, f"{dir_name}_prosst.json"), "r") as f: | |
f.write("\n".join([json.dumps(r) for r in prosst_tokens])) | |
if args.merge_into == 'csv': | |
# read json files and merge to a single csv according to the same 'name' column | |
ss_json = os.path.join(args.out_dir, f"{dir_name}_ss.json") | |
esm3_json = os.path.join(args.out_dir, f"{dir_name}_esm3.json") | |
fs_json = os.path.join(args.out_dir, f"{dir_name}_fs.json") | |
prosst_json = os.path.join(args.out_dir, f"{dir_name}_prosst.json") | |
# load json line files | |
ss_df = pd.read_json(ss_json, lines=True) | |
esm3_df = pd.read_json(esm3_json, lines=True) | |
fs_df = pd.read_json(fs_json, lines=True) | |
prosst_json = os.path_join(prosst_json, lines=True) | |
# merge the three dataframes by the 'name' column | |
df = pd.merge(ss_df, fs_df, on='name', how='inner') | |
df = pd.merge(df, esm3_df, on='name', how='inner') | |
df = pd.merge(df, prosst_json, on='name', how='inner') | |
# sort by name | |
df = df.sort_values(by='name') | |
df.to_csv(os.path.join(args.out_dir, f"{dir_name}.csv"), index=False) | |
if not args.save_intermediate: | |
# remove intermediate files | |
os.remove(ss_json) | |
os.remove(esm3_json) | |
os.remove(fs_json) | |
os.remove(prosst_json) | |