import os import json import argparse import torch import pandas as pd from tqdm import tqdm from esm.models.vqvae import StructureTokenEncoder from get_esm3_structure_seq import get_esm3_structure_seq from get_foldseek_structure_seq import get_foldseek_structure_seq from get_secondary_structure_seq import get_secondary_structure_seq from get_prosst_str_token import get_prosst_token # ignore the warning import warnings warnings.filterwarnings("ignore") def ESM3_structure_encoder_v0(device: torch.device | str = "cpu"): model = ( StructureTokenEncoder( d_model=1024, n_heads=1, v_heads=128, n_layers=2, d_out=128, n_codes=4096 ) .to(device) .eval() ) state_dict = torch.load( "./src/data/weight/esm3_structure_encoder_v0.pth", map_location=device ) model.load_state_dict(state_dict) return model if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--pdb_dir", type=str, default='dataset/sesadapter/DeepET/esmfold_pdb') parser.add_argument("--pdb_file", type=str, default=None) parser.add_argument("--out_dir", type=str, default='dataset/sesadapter/DeepET') parser.add_argument("--merge_into", type=str, default='csv', choices=['json', 'csv']) parser.add_argument("--save_intermediate", action='store_true') args = parser.parse_args() device = "cuda:0" esm3_encoder = ESM3_structure_encoder_v0(device) if args.pdb_dir is not None: dir_name = os.path.basename(args.pdb_dir) pdb_files = os.listdir(args.pdb_dir) ss_results, esm3_results = [], [] for pdb_file in tqdm(pdb_files): ss_result, error = get_secondary_structure_seq(os.path.join(args.pdb_dir, pdb_file)) if error is not None: print(error) continue ss_results.append(ss_result) esm3_result = get_esm3_structure_seq(os.path.join(args.pdb_dir, pdb_file), esm3_encoder, device) esm3_results.append(esm3_result) # clear cuda cache torch.cuda.empty_cache() with open(os.path.join(args.out_dir, f"{dir_name}_ss.json"), "w") as f: f.write("\n".join([json.dumps(r) for r in ss_results])) with open(os.path.join(args.out_dir, f"{dir_name}_esm3.json"), "w") as f: f.write("\n".join([json.dumps(r) for r in esm3_results])) fs_results = get_foldseek_structure_seq(args.pdb_dir) with open(os.path.join(args.out_dir, f"{dir_name}_fs.json"), "w") as f: f.write("\n".join([json.dumps(r) for r in fs_results])) prosst_tokens = get_prosst_token(args.pdb_dir) with open(os.path.join(args.out_dir, f"{dir_name}_prosst.json"), "r") as f: f.write("\n".join([json.dumps(r) for r in prosst_tokens])) if args.merge_into == 'csv': # read json files and merge to a single csv according to the same 'name' column ss_json = os.path.join(args.out_dir, f"{dir_name}_ss.json") esm3_json = os.path.join(args.out_dir, f"{dir_name}_esm3.json") fs_json = os.path.join(args.out_dir, f"{dir_name}_fs.json") prosst_json = os.path.join(args.out_dir, f"{dir_name}_prosst.json") # load json line files ss_df = pd.read_json(ss_json, lines=True) esm3_df = pd.read_json(esm3_json, lines=True) fs_df = pd.read_json(fs_json, lines=True) prosst_json = os.path_join(prosst_json, lines=True) # merge the three dataframes by the 'name' column df = pd.merge(ss_df, fs_df, on='name', how='inner') df = pd.merge(df, esm3_df, on='name', how='inner') df = pd.merge(df, prosst_json, on='name', how='inner') # sort by name df = df.sort_values(by='name') df.to_csv(os.path.join(args.out_dir, f"{dir_name}.csv"), index=False) if not args.save_intermediate: # remove intermediate files os.remove(ss_json) os.remove(esm3_json) os.remove(fs_json) os.remove(prosst_json)