File size: 3,689 Bytes
a1f69bb
 
 
86ea5fd
a1f69bb
d8aa11d
a1f69bb
 
 
 
 
 
 
 
 
 
 
e90f748
 
 
 
d8aa11d
 
 
 
 
 
 
 
 
 
a1f69bb
d8aa11d
a1f69bb
 
 
86ea5fd
a1f69bb
 
86ea5fd
d8aa11d
 
 
 
 
 
86ea5fd
a1f69bb
d8aa11d
 
 
 
 
86ea5fd
 
 
 
 
d8aa11d
86ea5fd
35a268c
36be636
86ea5fd
e90f748
35a268c
 
86ea5fd
a1f69bb
 
 
 
 
86ea5fd
d8aa11d
 
 
 
 
 
 
 
 
 
a1f69bb
d8aa11d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1f69bb
d8aa11d
 
 
 
 
 
 
 
 
 
 
 
 
c99851d
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import spaces
import rembg
import torch
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, AutoPipelineForImage2Image
import cv2
from transformers import pipeline
import numpy as np
from PIL import Image
import gradio as gr

# pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
# pipe.to("cuda")

def check_prompt(prompt):
    if prompt is None:
        raise gr.Error("Please enter a prompt!")

imagepipe = AutoPipelineForImage2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float32, use_safetensors=True
)

controlNet_normal = ControlNetModel.from_pretrained(
        "fusing/stable-diffusion-v1-5-controlnet-normal", 
        torch_dtype=torch.float16
    )

controlNet_depth = ControlNetModel.from_pretrained(
        "lllyasviel/sd-controlnet-depth", 
        torch_dtype=torch.float16
    )
controlNet_MAP = {"Normal": controlNet_normal, "Depth": controlNet_depth}

# vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, use_safetensors=True)

# Function to generate an image from text using diffusion
@spaces.GPU
def generate_txttoimg(prompt, control_image, controlnet):
    prompt += "no background, side view, minimalist shot, single shoe, no legs, product photo"
    
    textpipe = StableDiffusionControlNetPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5",
    controlnet=controlNet_MAP[controlnet],
    torch_dtype=torch.float16,
    safety_checker = None
    )
    
    textpipe.to("cuda")

    if controlnet == "Normal":
        control_image = get_normal(control_image)
    elif controlnet == "Depth":
        control_image = get_depth(control_image)
    
    image = textpipe(prompt, image=control_image).images[0]

    image2 = rembg.remove(image)

    return image2

@spaces.GPU
def generate_imgtoimg(prompt, init_image, strength=0.5):
    prompt += ", no background, side view, minimalist shot, single shoe, no legs, product photo"
    
    imagepipe.to("cuda")

    image = imagepipe(prompt, image=init_image, strength=strength).images[0]
    
    image2 = rembg.remove(image)

    return image2



def get_normal(image):
    depth_estimator = pipeline("depth-estimation", model ="Intel/dpt-hybrid-midas" )

    image = depth_estimator(image)['predicted_depth'][0]

    image = image.numpy()

    image_depth = image.copy()
    image_depth -= np.min(image_depth)
    image_depth /= np.max(image_depth)

    bg_threhold = 0.4

    x = cv2.Sobel(image, cv2.CV_32F, 1, 0, ksize=3)
    x[image_depth < bg_threhold] = 0

    y = cv2.Sobel(image, cv2.CV_32F, 0, 1, ksize=3)
    y[image_depth < bg_threhold] = 0

    z = np.ones_like(x) * np.pi * 2.0

    image = np.stack([x, y, z], axis=2)
    image /= np.sum(image ** 2.0, axis=2, keepdims=True) ** 0.5
    image = (image * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
    normalimage = Image.fromarray(image)

    return normalimage

def get_depth(image):
    depth_estimator = pipeline('depth-estimation')

    image = depth_estimator(image)['depth']
    image = np.array(image)
    image = image[:, :, None]
    image = np.concatenate([image, image, image], axis=2)
    depthimage = Image.fromarray(image)
    return depthimage

# def get_canny(image):
#     image = np.array(image)

#     low_threshold = 100
#     high_threshold = 200

#     image = cv2.Canny(image,low_threshold,high_threshold)
#     image = image[:,:,None]
#     image = np.concatenate([image, image, image], axis=2)
#     canny_image = Image.fromarray(image)
#     return canny_image

def update_image(image):
    return image