MaxMilan1
commited on
Commit
·
d8aa11d
1
Parent(s):
f2c204b
changess
Browse files- app.py +2 -7
- util/text_img.py +78 -30
app.py
CHANGED
@@ -28,11 +28,7 @@ with gr.Blocks(theme=theme) as GenDemo:
|
|
28 |
with gr.Row(variant="panel"):
|
29 |
with gr.Column():
|
30 |
prompt = gr.Textbox(label="Enter a discription of a shoe")
|
31 |
-
|
32 |
-
select = gr.Dropdown(label="Select a model", choices=["Canny","Depth","Normal"])
|
33 |
-
|
34 |
-
scale = gr.Slider(label="Control Image Scale", minimum=0.1, maximum=1.0, step=0.1, value=0.5, visible=(select == "Canny"))
|
35 |
-
|
36 |
controlNet_image = gr.Image(label="Enter an image of a shoe, that you want to use as a reference", type='numpy')
|
37 |
gr.Examples(
|
38 |
examples=[
|
@@ -46,8 +42,7 @@ with gr.Blocks(theme=theme) as GenDemo:
|
|
46 |
button_gen = gr.Button("Generate Image", elem_id="generateIm", variant="primary")
|
47 |
gen_image = gr.Image(label="Generated Image", image_mode="RGBA", type='pil', show_download_button=True, show_label=False)
|
48 |
|
49 |
-
|
50 |
-
button_gen.click(check_prompt, inputs=[prompt]).success(generate_image, inputs=[prompt, negative_prompt, controlNet_image, scale], outputs=[gen_image])
|
51 |
|
52 |
with gr.Tab("Image to 3D Model Generator"):
|
53 |
with gr.Row(variant="panel"):
|
|
|
28 |
with gr.Row(variant="panel"):
|
29 |
with gr.Column():
|
30 |
prompt = gr.Textbox(label="Enter a discription of a shoe")
|
31 |
+
select = gr.Dropdown(label="Select a model", choices=["Canny","Depth","Normal"])
|
|
|
|
|
|
|
|
|
32 |
controlNet_image = gr.Image(label="Enter an image of a shoe, that you want to use as a reference", type='numpy')
|
33 |
gr.Examples(
|
34 |
examples=[
|
|
|
42 |
button_gen = gr.Button("Generate Image", elem_id="generateIm", variant="primary")
|
43 |
gen_image = gr.Image(label="Generated Image", image_mode="RGBA", type='pil', show_download_button=True, show_label=False)
|
44 |
|
45 |
+
button_gen.click(check_prompt, inputs=[prompt]).success(generate_image, inputs=[prompt, negative_prompt, controlNet_image, select], outputs=[gen_image])
|
|
|
46 |
|
47 |
with gr.Tab("Image to 3D Model Generator"):
|
48 |
with gr.Row(variant="panel"):
|
util/text_img.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
import spaces
|
2 |
import rembg
|
3 |
import torch
|
4 |
-
from diffusers import
|
5 |
import cv2
|
|
|
6 |
import numpy as np
|
7 |
from PIL import Image
|
8 |
import gradio as gr
|
@@ -14,47 +15,94 @@ def check_prompt(prompt):
|
|
14 |
if prompt is None:
|
15 |
raise gr.Error("Please enter a prompt!")
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
torch_dtype=torch.float16,
|
28 |
-
use_safetensors=True
|
29 |
-
)
|
30 |
|
31 |
-
|
32 |
|
33 |
# Function to generate an image from text using diffusion
|
34 |
@spaces.GPU
|
35 |
-
def generate_image(prompt,
|
36 |
prompt += "no background, side view, minimalist shot, single shoe, no legs, product photo"
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
42 |
negative_prompt=negative_prompt,
|
43 |
-
image=
|
44 |
-
controlnet_conditioning_scale=
|
45 |
-
|
46 |
image2 = rembg.remove(image)
|
47 |
|
48 |
return image2
|
49 |
|
50 |
-
def get_canny(image):
|
51 |
-
image = np.array(image)
|
52 |
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
image = np.concatenate([image, image, image], axis=2)
|
59 |
-
|
60 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import spaces
|
2 |
import rembg
|
3 |
import torch
|
4 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, AutoencoderKL
|
5 |
import cv2
|
6 |
+
from transformers import pipeline
|
7 |
import numpy as np
|
8 |
from PIL import Image
|
9 |
import gradio as gr
|
|
|
15 |
if prompt is None:
|
16 |
raise gr.Error("Please enter a prompt!")
|
17 |
|
18 |
+
controlNet_normal = ControlNetModel.from_pretrained(
|
19 |
+
"fusing/stable-diffusion-v1-5-controlnet-normal",
|
20 |
+
torch_dtype=torch.float16
|
21 |
+
)
|
22 |
+
|
23 |
+
controlNet_depth = ControlNetModel.from_pretrained(
|
24 |
+
"lllyasviel/sd-controlnet-depth",
|
25 |
+
torch_dtype=torch.float16
|
26 |
+
)
|
27 |
+
controlNet_MAP = {"Normal": controlNet_normal, "Depth": controlNet_depth}
|
|
|
|
|
|
|
28 |
|
29 |
+
# vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, use_safetensors=True)
|
30 |
|
31 |
# Function to generate an image from text using diffusion
|
32 |
@spaces.GPU
|
33 |
+
def generate_image(prompt, control_image, controlnet):
|
34 |
prompt += "no background, side view, minimalist shot, single shoe, no legs, product photo"
|
35 |
|
36 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
37 |
+
"runwayml/stable-diffusion-v1-5",
|
38 |
+
controlnet=controlNet_MAP[controlnet],
|
39 |
+
torch_dtype=torch.float16,
|
40 |
+
safety_checker = None
|
41 |
+
)
|
42 |
+
|
43 |
+
pipe.to("cuda")
|
44 |
|
45 |
+
if controlnet == "Normal":
|
46 |
+
control_image = get_normal(control_image)
|
47 |
+
elif controlnet == "Depth":
|
48 |
+
control_image = get_depth(control_image)
|
49 |
+
|
50 |
+
image = pipe(prompt,
|
51 |
negative_prompt=negative_prompt,
|
52 |
+
image=control_image,
|
53 |
+
controlnet_conditioning_scale=1.0).images[0]
|
54 |
+
|
55 |
image2 = rembg.remove(image)
|
56 |
|
57 |
return image2
|
58 |
|
|
|
|
|
59 |
|
60 |
+
def get_normal(image):
|
61 |
+
depth_estimator = pipeline("depth-estimation", model ="Intel/dpt-hybrid-midas" )
|
62 |
+
|
63 |
+
image = depth_estimator(image)['predicted_depth'][0]
|
64 |
+
|
65 |
+
image = image.numpy()
|
66 |
+
|
67 |
+
image_depth = image.copy()
|
68 |
+
image_depth -= np.min(image_depth)
|
69 |
+
image_depth /= np.max(image_depth)
|
70 |
|
71 |
+
bg_threhold = 0.4
|
72 |
+
|
73 |
+
x = cv2.Sobel(image, cv2.CV_32F, 1, 0, ksize=3)
|
74 |
+
x[image_depth < bg_threhold] = 0
|
75 |
+
|
76 |
+
y = cv2.Sobel(image, cv2.CV_32F, 0, 1, ksize=3)
|
77 |
+
y[image_depth < bg_threhold] = 0
|
78 |
+
|
79 |
+
z = np.ones_like(x) * np.pi * 2.0
|
80 |
+
|
81 |
+
image = np.stack([x, y, z], axis=2)
|
82 |
+
image /= np.sum(image ** 2.0, axis=2, keepdims=True) ** 0.5
|
83 |
+
image = (image * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
|
84 |
+
normalimage = Image.fromarray(image)
|
85 |
+
|
86 |
+
return normalimage
|
87 |
+
|
88 |
+
def get_depth(image):
|
89 |
+
depth_estimator = pipeline('depth-estimation')
|
90 |
+
|
91 |
+
image = depth_estimator(image)['depth']
|
92 |
+
image = np.array(image)
|
93 |
+
image = image[:, :, None]
|
94 |
image = np.concatenate([image, image, image], axis=2)
|
95 |
+
depthimage = Image.fromarray(image)
|
96 |
+
return depthimage
|
97 |
+
|
98 |
+
# def get_canny(image):
|
99 |
+
# image = np.array(image)
|
100 |
+
|
101 |
+
# low_threshold = 100
|
102 |
+
# high_threshold = 200
|
103 |
+
|
104 |
+
# image = cv2.Canny(image,low_threshold,high_threshold)
|
105 |
+
# image = image[:,:,None]
|
106 |
+
# image = np.concatenate([image, image, image], axis=2)
|
107 |
+
# canny_image = Image.fromarray(image)
|
108 |
+
# return canny_image
|