test / models /nlp.py
Quintino Fernandes
All models and query
a2682b3
raw
history blame
380 Bytes
import spacy
import nltk
class NLPModel:
def __init__(self):
self.nlp = spacy.load("pt_core_news_md")
nltk.download('punkt')
def extract_entities(self, text: str):
doc = self.nlp(text)
return [(ent.text.lower(), ent.label_) for ent in doc.ents]
def tokenize_sentences(self, text: str):
return nltk.sent_tokenize(text)