import spacy import nltk class NLPModel: def __init__(self): self.nlp = spacy.load("pt_core_news_md") nltk.download('punkt') def extract_entities(self, text: str): doc = self.nlp(text) return [(ent.text.lower(), ent.label_) for ent in doc.ents] def tokenize_sentences(self, text: str): return nltk.sent_tokenize(text)