⚠️ Author's Note: This model was fine-tuned for sanity-checking purposes using only a single Korean dataset.
As a result, it may be overfitted and may not generalize well to other datasets.
You can find the training code and related resources in my GitHub repository: 2025-korean-asr-benchmark
openai/whisper-large-v3-turbo Korean - Fine-tuned
This model is a fine-tuned version of openai/whisper-large-v3-turbo on the Bingsu/zeroth-korean dataset. It achieves the following results on the evaluation set:
- Loss: 0.0733
- Wer: 4.3216
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.4622 | 0.1437 | 25 | 0.3690 | 19.2290 |
0.2 | 0.2874 | 50 | 0.1578 | 15.3290 |
0.1213 | 0.4310 | 75 | 0.1396 | 13.0703 |
0.1068 | 0.5747 | 100 | 0.1314 | 12.2572 |
0.1 | 0.7184 | 125 | 0.1242 | 11.0676 |
0.0922 | 0.8621 | 150 | 0.1181 | 10.6460 |
0.0895 | 1.0057 | 175 | 0.1122 | 9.6371 |
0.0667 | 1.1494 | 200 | 0.1098 | 9.2155 |
0.0608 | 1.2931 | 225 | 0.1049 | 8.4023 |
0.0608 | 1.4368 | 250 | 0.1007 | 7.6946 |
0.0577 | 1.5805 | 275 | 0.0992 | 7.4386 |
0.0591 | 1.7241 | 300 | 0.0953 | 6.5502 |
0.0547 | 1.8678 | 325 | 0.0920 | 5.9630 |
0.0518 | 2.0115 | 350 | 0.0885 | 5.5112 |
0.0299 | 2.1552 | 375 | 0.0878 | 5.8877 |
0.0311 | 2.2989 | 400 | 0.0872 | 4.8637 |
0.0319 | 2.4425 | 425 | 0.0895 | 5.2552 |
0.0363 | 2.5862 | 450 | 0.0869 | 5.1197 |
0.0325 | 2.7299 | 475 | 0.0851 | 4.9390 |
0.0331 | 2.8736 | 500 | 0.0849 | 4.7282 |
0.0314 | 3.0172 | 525 | 0.0805 | 4.9240 |
0.0196 | 3.1609 | 550 | 0.0805 | 4.5174 |
0.0164 | 3.3046 | 575 | 0.0820 | 5.4209 |
0.0166 | 3.4483 | 600 | 0.0807 | 6.1135 |
0.0153 | 3.5920 | 625 | 0.0775 | 3.9753 |
0.0127 | 3.7356 | 650 | 0.0741 | 4.8035 |
0.014 | 3.8793 | 675 | 0.0731 | 7.1827 |
0.012 | 4.0230 | 700 | 0.0719 | 4.9992 |
0.0067 | 4.1667 | 725 | 0.0744 | 4.5475 |
0.0061 | 4.3103 | 750 | 0.0732 | 5.2101 |
0.0053 | 4.4540 | 775 | 0.0736 | 4.4270 |
0.0061 | 4.5977 | 800 | 0.0743 | 4.8938 |
0.0048 | 4.7414 | 825 | 0.0740 | 5.3305 |
0.0045 | 4.8851 | 850 | 0.0733 | 4.3216 |
Framework versions
- Transformers 4.50.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.21.1
- Downloads last month
- 310
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for seongsubae/openai-whisper-large-v3-turbo-ko-TEST
Base model
openai/whisper-large-v3
Finetuned
openai/whisper-large-v3-turbo