ns_finetune_urdu_asr_org
This model is a fine-tuned version of openai/whisper-large-v3 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1715
- Wer: 11.9535
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2500
- training_steps: 25972
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.1999 | 0.0770 | 2000 | 0.2515 | 21.0816 |
0.2057 | 0.1540 | 4000 | 0.2292 | 18.5375 |
0.1721 | 0.2310 | 6000 | 0.2063 | 19.7264 |
0.1357 | 1.0580 | 8000 | 0.1906 | 15.0601 |
0.0982 | 1.1350 | 10000 | 0.1905 | 15.9422 |
0.0858 | 1.2120 | 12000 | 0.1808 | 16.5729 |
0.0777 | 2.0390 | 14000 | 0.1673 | 14.0714 |
0.0543 | 2.1160 | 16000 | 0.1777 | 13.1722 |
0.0426 | 2.1931 | 18000 | 0.1712 | 12.3626 |
0.0417 | 3.0201 | 20000 | 0.1682 | 12.5458 |
0.0286 | 3.0971 | 22000 | 0.1714 | 12.7418 |
0.0229 | 3.1741 | 24000 | 0.1715 | 11.9535 |
Framework versions
- Transformers 4.50.2
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1
- Downloads last month
- 30
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for sajadkawa/ns_finetune_urdu_asr_org
Base model
openai/whisper-large-v3