ner-portuguese-br-bert-cased
This model aims to help reduce the need for models in Portuguese.
How to use:
from transformers import BertForTokenClassification, DistilBertTokenizerFast, pipeline
model = BertForTokenClassification.from_pretrained('rhaymison/ner-portuguese-br-bert-cased')
tokenizer = DistilBertTokenizerFast.from_pretrained('rhaymison/ner-portuguese-br-bert-cased'
, model_max_length=512
, do_lower_case=False
)
nlp = pipeline('ner', model=model, tokenizer=tokenizer, grouped_entities=True)
result = nlp(f"""
A passagem de uma frente fria pelo Rio Grande do Sul e Santa Catarina mantém o tempo instável,
e chove a qualquer hora nos dois estados. Há risco de temporais no sul e leste gaúcho.
No Paraná segue quente, e pancadas de chuva ocorrem a partir da tarde, também com risco de temporais.
""")
###output
[{'entity_group': 'LOC',
'score': 0.99812114,
'word': 'Rio Grande do Sul',
'start': 36,
'end': 53},
{'entity_group': 'LOC',
'score': 0.99795854,
'word': 'Santa Catarina',
'start': 56,
'end': 70},
{'entity_group': 'LOC',
'score': 0.997009,
'word': 'Paraná',
'start': 186,
'end': 192}]
He has various named classes. Follow the list below:
O
: 0B-ANIM
: 1B-BIO
: 2B-CEL
: 3B-DIS
: 4B-EVE
: 5B-FOOD
: 6B-INST
: 7B-LOC
: 8B-MEDIA
: 9B-MYTH
: 10B-ORG
: 11B-PER
: 12B-PLANT
: 13B-TIME
: 14B-VEHI
: 15I-ANIM
: 16I-BIO
: 17I-CEL
: 18I-DIS
: 19I-EVE
: 20I-FOOD
: 21I-INST
: 22I-LOC
: 23I-MEDIA
: 24I-MYTH
: 25I-ORG
: 26I-PER
: 27I-PLANT
: 28I-TIME
: 29I-VEHI
: 30
This model is a fine-tuned version of google-bert/bert-base-cased on the MultNERD dataset. It achieves the following results on the evaluation set:
- Loss: 0.0618
- Precision: 0.8965
- Recall: 0.8815
- F1: 0.8889
- Accuracy: 0.9810
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.3792 | 0.03 | 500 | 0.2062 | 0.6752 | 0.6537 | 0.6642 | 0.9522 |
0.1822 | 0.06 | 1000 | 0.1587 | 0.7685 | 0.7267 | 0.7470 | 0.9618 |
0.152 | 0.08 | 1500 | 0.1407 | 0.7932 | 0.7675 | 0.7802 | 0.9663 |
0.1385 | 0.11 | 2000 | 0.1240 | 0.8218 | 0.7863 | 0.8037 | 0.9693 |
0.1216 | 0.14 | 2500 | 0.1129 | 0.8529 | 0.7850 | 0.8175 | 0.9710 |
0.1192 | 0.17 | 3000 | 0.1059 | 0.8520 | 0.7917 | 0.8208 | 0.9717 |
0.1165 | 0.2 | 3500 | 0.1053 | 0.8373 | 0.8071 | 0.8220 | 0.9717 |
0.0997 | 0.23 | 4000 | 0.0978 | 0.8434 | 0.8212 | 0.8322 | 0.9729 |
0.0938 | 0.25 | 4500 | 0.0963 | 0.8393 | 0.8313 | 0.8353 | 0.9736 |
0.0921 | 0.28 | 5000 | 0.0867 | 0.8593 | 0.8365 | 0.8478 | 0.9750 |
0.0943 | 0.31 | 5500 | 0.0846 | 0.8704 | 0.8268 | 0.8480 | 0.9754 |
0.0921 | 0.34 | 6000 | 0.0832 | 0.8556 | 0.8384 | 0.8469 | 0.9750 |
0.0936 | 0.37 | 6500 | 0.0802 | 0.8726 | 0.8361 | 0.8540 | 0.9760 |
0.0854 | 0.39 | 7000 | 0.0780 | 0.8749 | 0.8452 | 0.8598 | 0.9767 |
0.082 | 0.42 | 7500 | 0.0751 | 0.8812 | 0.8472 | 0.8639 | 0.9773 |
0.0761 | 0.45 | 8000 | 0.0745 | 0.8752 | 0.8571 | 0.8660 | 0.9772 |
0.0799 | 0.48 | 8500 | 0.0752 | 0.8635 | 0.8530 | 0.8582 | 0.9767 |
0.0728 | 0.51 | 9000 | 0.0746 | 0.8938 | 0.8398 | 0.8660 | 0.9780 |
0.0787 | 0.54 | 9500 | 0.0715 | 0.8791 | 0.8552 | 0.8670 | 0.9780 |
0.0721 | 0.56 | 10000 | 0.0707 | 0.8822 | 0.8598 | 0.8709 | 0.9785 |
0.0729 | 0.59 | 10500 | 0.0682 | 0.8775 | 0.8743 | 0.8759 | 0.9790 |
0.0707 | 0.62 | 11000 | 0.0686 | 0.8797 | 0.8696 | 0.8746 | 0.9789 |
0.0726 | 0.65 | 11500 | 0.0683 | 0.8944 | 0.8497 | 0.8715 | 0.9788 |
0.0689 | 0.68 | 12000 | 0.0667 | 0.8931 | 0.8609 | 0.8767 | 0.9795 |
0.0735 | 0.7 | 12500 | 0.0673 | 0.8742 | 0.8815 | 0.8779 | 0.9791 |
0.0725 | 0.73 | 13000 | 0.0666 | 0.8849 | 0.8713 | 0.8781 | 0.9796 |
0.0684 | 0.76 | 13500 | 0.0656 | 0.8881 | 0.8728 | 0.8804 | 0.9799 |
0.0736 | 0.79 | 14000 | 0.0644 | 0.8948 | 0.8677 | 0.8811 | 0.9800 |
0.0663 | 0.82 | 14500 | 0.0644 | 0.8844 | 0.8764 | 0.8803 | 0.9798 |
0.0652 | 0.85 | 15000 | 0.0645 | 0.8778 | 0.8845 | 0.8812 | 0.9797 |
0.0672 | 0.87 | 15500 | 0.0644 | 0.8788 | 0.8807 | 0.8797 | 0.9796 |
0.0625 | 0.9 | 16000 | 0.0630 | 0.8889 | 0.8819 | 0.8854 | 0.9804 |
0.0712 | 0.93 | 16500 | 0.0621 | 0.8913 | 0.8818 | 0.8866 | 0.9806 |
0.0629 | 0.96 | 17000 | 0.0618 | 0.8965 | 0.8815 | 0.8889 | 0.9810 |
0.0649 | 0.99 | 17500 | 0.0618 | 0.8953 | 0.8806 | 0.8879 | 0.9809 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
Comments
Any idea, help or report will always be welcome.
email: [email protected]
- Downloads last month
- 29
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for rhaymison/ner-portuguese-br-bert-cased
Base model
google-bert/bert-base-cased