metadata
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: tl-test-learn-prompt-classifier
results: []
datasets:
- reddgr/tl-test-learn-prompts
tl-test-learn-prompt-classifier
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.1733
- Train Accuracy: 0.9756
- Validation Loss: 0.3006
- Validation Accuracy: 0.8977
- Epoch: 6
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 5e-06, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
---|---|---|---|---|
0.6870 | 0.5707 | 0.6656 | 0.6136 | 0 |
0.6542 | 0.6293 | 0.6289 | 0.6477 | 1 |
0.5970 | 0.7902 | 0.5541 | 0.7955 | 2 |
0.4936 | 0.8829 | 0.4490 | 0.8523 | 3 |
0.3649 | 0.9415 | 0.3775 | 0.875 | 4 |
0.2563 | 0.9561 | 0.3254 | 0.8977 | 5 |
0.1733 | 0.9756 | 0.3006 | 0.8977 | 6 |
Framework versions
- Transformers 4.44.2
- TensorFlow 2.18.0-dev20240717
- Datasets 2.21.0
- Tokenizers 0.19.1