reddgr's picture
Update README.md
e3aed10 verified
|
raw
history blame
2.25 kB
metadata
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_keras_callback
model-index:
  - name: tl-test-learn-prompt-classifier
    results: []
datasets:
  - reddgr/tl-test-learn-prompts

tl-test-learn-prompt-classifier

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.1733
  • Train Accuracy: 0.9756
  • Validation Loss: 0.3006
  • Validation Accuracy: 0.8977
  • Epoch: 6

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 5e-06, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
0.6870 0.5707 0.6656 0.6136 0
0.6542 0.6293 0.6289 0.6477 1
0.5970 0.7902 0.5541 0.7955 2
0.4936 0.8829 0.4490 0.8523 3
0.3649 0.9415 0.3775 0.875 4
0.2563 0.9561 0.3254 0.8977 5
0.1733 0.9756 0.3006 0.8977 6

Framework versions

  • Transformers 4.44.2
  • TensorFlow 2.18.0-dev20240717
  • Datasets 2.21.0
  • Tokenizers 0.19.1