📰 Ner-rubert-tiny-RuNews
Модель для распознавания именованных сущностей (NER) в русскоязычных новостных текстах.
🔍 Основана на RuBERT-tiny2 и дообучена на новостном корпусе Collection3, с фокусом на тексты, содержащие упоминания Сбербанка, Яндекса, а также других медиа и государственных структур.
💡 Что умеет модель
Распознаёт следующие типы сущностей:
Метка | Значение |
---|---|
PER |
Персоны |
ORG |
Организации |
LOC |
Локации |
GEOPOLIT |
Геополитические образования (страны, регионы) |
MEDIA |
СМИ и медиа-ресурсы |
📊 Метрики на тестовом наборе
Метрика | Значение |
---|---|
Precision | 0.793 |
Recall | 0.914 |
F1-score | 0.849 |
Accuracy | 0.972 |
🛠️ Пример использования
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
label2id = {
'O': 0,
'B-GEOPOLIT': 1, 'I-GEOPOLIT': 2,
'B-MEDIA': 3, 'I-MEDIA': 4,
'B-LOC': 5, 'I-LOC': 6,
'B-ORG': 7, 'I-ORG': 8,
'B-PER': 9, 'I-PER': 10
}
id2label = {v: k for k, v in label2id.items()}
model_id = "r1char9/ner-rubert-tiny-RuNews"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForTokenClassification.from_pretrained(
model_id,
num_labels=len(label2id),
id2label=id2label,
label2id=label2id
)
ner_pipeline = pipeline(
"ner",
model=model,
tokenizer=tokenizer,
aggregation_strategy="simple"
)
text = (
"Генеральный директор Сбербанка Герман Греф на конференции в Москве заявил, "
"что сотрудничество с Яндексом в области искусственного интеллекта выходит на новый уровень. "
"Он также отметил, что правительство Российской Федерации поддерживает развитие цифровой экономики, "
"особенно в рамках Евразийского экономического союза."
)
results = ner_pipeline(text)
for entity in results:
print(entity)
# {'entity_group': 'ORG', 'score': 0.951569, 'word': 'Сбербанка', 'start': 21, 'end': 30}
# {'entity_group': 'PER', 'score': 0.9922959, 'word': 'Герман Греф', 'start': 31, 'end': 42}
# {'entity_group': 'LOC', 'score': 0.60198957, 'word': 'Москве', 'start': 60, 'end': 66}
# {'entity_group': 'ORG', 'score': 0.6973838, 'word': 'Яндексом', 'start': 96, 'end': 104}
# {'entity_group': 'GEOPOLIT', 'score': 0.9631994, 'word': 'Российской Федерации', 'start': 203, 'end': 223}
# {'entity_group': 'ORG', 'score': 0.85091865, 'word': 'Евразийского экономического союза.', 'start': 284, 'end': 318}
- Downloads last month
- 33
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for r1char9/ner-rubert-tiny-news
Base model
cointegrated/rubert-tiny2