BGNet / README.md
qaihm-bot's picture
Upload README.md with huggingface_hub
7757906 verified
metadata
library_name: pytorch
license: unlicense
tags:
  - real_time
  - android
pipeline_tag: image-segmentation

BGNet: Optimized for Mobile Deployment

Segment images in real-time on device

BGNet or Boundary-Guided Network, is a model designed for camouflaged object detection. It leverages edge semantics to enhance the representation learning process, making it more effective at identifying objects that blend into their surroundings

This model is an implementation of BGNet found here.

More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Model_use_case.semantic_segmentation
  • Model Stats:
    • Model checkpoint: BGNet
    • Input resolution: 416x416
    • Number of parameters: 77.8M
    • Model size: 297 MB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
BGNet float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 855.461 ms 1 - 126 MB NPU --
BGNet float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN 116.919 ms 2 - 12 MB NPU --
BGNet float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 33.765 ms 0 - 212 MB NPU --
BGNet float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN 41.73 ms 2 - 54 MB NPU --
BGNet float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 23.028 ms 1 - 19 MB NPU --
BGNet float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN 19.667 ms 2 - 6 MB NPU --
BGNet float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 35.068 ms 1 - 125 MB NPU --
BGNet float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN 32.667 ms 2 - 12 MB NPU --
BGNet float SA7255P ADP Qualcomm® SA7255P TFLITE 855.461 ms 1 - 126 MB NPU --
BGNet float SA7255P ADP Qualcomm® SA7255P QNN 116.919 ms 2 - 12 MB NPU --
BGNet float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 22.986 ms 1 - 18 MB NPU --
BGNet float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN 19.916 ms 2 - 13 MB NPU --
BGNet float SA8295P ADP Qualcomm® SA8295P TFLITE 37.958 ms 1 - 99 MB NPU --
BGNet float SA8295P ADP Qualcomm® SA8295P QNN 34.78 ms 2 - 20 MB NPU --
BGNet float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 22.858 ms 1 - 18 MB NPU --
BGNet float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN 20.118 ms 2 - 5 MB NPU --
BGNet float SA8775P ADP Qualcomm® SA8775P TFLITE 35.068 ms 1 - 125 MB NPU --
BGNet float SA8775P ADP Qualcomm® SA8775P QNN 32.667 ms 2 - 12 MB NPU --
BGNet float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile TFLITE 23.043 ms 0 - 19 MB NPU --
BGNet float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN 19.768 ms 2 - 30 MB NPU --
BGNet float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile ONNX 20.388 ms 2 - 333 MB NPU --
BGNet float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 17.098 ms 1 - 235 MB NPU --
BGNet float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN 14.745 ms 2 - 74 MB NPU --
BGNet float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 14.91 ms 4 - 80 MB NPU --
BGNet float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile TFLITE 13.141 ms 0 - 126 MB NPU --
BGNet float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN 14.904 ms 2 - 63 MB NPU --
BGNet float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile ONNX 15.931 ms 1 - 64 MB NPU --
BGNet float Snapdragon X Elite CRD Snapdragon® X Elite QNN 20.303 ms 2 - 2 MB NPU --
BGNet float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 22.198 ms 154 - 154 MB NPU --

License

  • The license for the original implementation of BGNet can be found [here](This model's original implementation does not provide a LICENSE.).
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Usage and Limitations

Model may not be used for or in connection with any of the following applications:

  • Accessing essential private and public services and benefits;
  • Administration of justice and democratic processes;
  • Assessing or recognizing the emotional state of a person;
  • Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
  • Education and vocational training;
  • Employment and workers management;
  • Exploitation of the vulnerabilities of persons resulting in harmful behavior;
  • General purpose social scoring;
  • Law enforcement;
  • Management and operation of critical infrastructure;
  • Migration, asylum and border control management;
  • Predictive policing;
  • Real-time remote biometric identification in public spaces;
  • Recommender systems of social media platforms;
  • Scraping of facial images (from the internet or otherwise); and/or
  • Subliminal manipulation