|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- prithivMLmods/Multilabel-GeoSceneNet-16K |
|
library_name: transformers |
|
language: |
|
- en |
|
base_model: |
|
- google/siglip2-base-patch16-224 |
|
pipeline_tag: image-classification |
|
tags: |
|
- Structures |
|
- Desert |
|
- Glacier |
|
- Street |
|
- Ocean |
|
- Image-Classifier |
|
- art |
|
- Mountain |
|
--- |
|
|
|
 |
|
|
|
# **Multilabel-GeoSceneNet** |
|
|
|
> **Multilabel-GeoSceneNet** is a vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for **multi-label** image classification. It is designed to recognize and label multiple geographic or environmental elements in a single image using the **SiglipForImageClassification** architecture. |
|
|
|
```py |
|
Classification Report: |
|
precision recall f1-score support |
|
|
|
Buildings and Structures 0.8881 0.9498 0.9179 2190 |
|
Desert 0.9649 0.9480 0.9564 2000 |
|
Forest Area 0.9807 0.9855 0.9831 2271 |
|
Hill or Mountain 0.8616 0.8993 0.8800 2512 |
|
Ice Glacier 0.9114 0.8382 0.8732 2404 |
|
Sea or Ocean 0.9328 0.9525 0.9426 2274 |
|
Street View 0.9476 0.9106 0.9287 2382 |
|
|
|
accuracy 0.9245 16033 |
|
macro avg 0.9267 0.9263 0.9260 16033 |
|
weighted avg 0.9253 0.9245 0.9244 16033 |
|
``` |
|
|
|
 |
|
|
|
--- |
|
|
|
The model predicts the presence of one or more of the following **7 geographic scene categories**: |
|
|
|
``` |
|
Class 0: "Buildings and Structures" |
|
Class 1: "Desert" |
|
Class 2: "Forest Area" |
|
Class 3: "Hill or Mountain" |
|
Class 4: "Ice Glacier" |
|
Class 5: "Sea or Ocean" |
|
Class 6: "Street View" |
|
``` |
|
|
|
--- |
|
|
|
## **Install dependencies** |
|
|
|
```python |
|
!pip install -q transformers torch pillow gradio |
|
``` |
|
|
|
--- |
|
|
|
## **Inference Code** |
|
|
|
```python |
|
import gradio as gr |
|
from transformers import AutoImageProcessor, SiglipForImageClassification |
|
from PIL import Image |
|
import torch |
|
|
|
# Load model and processor |
|
model_name = "prithivMLmods/Multilabel-GeoSceneNet" # Updated model name |
|
model = SiglipForImageClassification.from_pretrained(model_name) |
|
processor = AutoImageProcessor.from_pretrained(model_name) |
|
|
|
def classify_geoscene_image(image): |
|
"""Predicts geographic scene labels for an input image.""" |
|
image = Image.fromarray(image).convert("RGB") |
|
inputs = processor(images=image, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
probs = torch.sigmoid(logits).squeeze().tolist() # Sigmoid for multilabel |
|
|
|
labels = { |
|
"0": "Buildings and Structures", |
|
"1": "Desert", |
|
"2": "Forest Area", |
|
"3": "Hill or Mountain", |
|
"4": "Ice Glacier", |
|
"5": "Sea or Ocean", |
|
"6": "Street View" |
|
} |
|
|
|
threshold = 0.5 |
|
predictions = { |
|
labels[str(i)]: round(probs[i], 3) |
|
for i in range(len(probs)) if probs[i] >= threshold |
|
} |
|
|
|
return predictions or {"None Detected": 0.0} |
|
|
|
# Create Gradio interface |
|
iface = gr.Interface( |
|
fn=classify_geoscene_image, |
|
inputs=gr.Image(type="numpy"), |
|
outputs=gr.Label(label="Predicted Scene Categories"), |
|
title="Multilabel-GeoSceneNet", |
|
description="Upload an image to detect multiple geographic scene elements (e.g., forest, ocean, buildings)." |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |
|
``` |
|
|
|
--- |
|
|
|
## **Intended Use:** |
|
|
|
The **Multilabel-GeoSceneNet** model is suitable for recognizing multiple geographic and structural elements in a single image. Use cases include: |
|
|
|
- **Remote Sensing:** Label elements in satellite or drone imagery. |
|
- **Geographic Tagging:** Auto-tagging images for search or sorting. |
|
- **Environmental Monitoring:** Identify features like glaciers or forests. |
|
- **Scene Understanding:** Help autonomous systems interpret complex scenes. |