LLHF

community
Activity Feed

AI & ML interests

None defined yet.

Recent Activity

llhf's activity

Xenova 
posted an update 10 days ago
victor 
posted an update 15 days ago
view post
Post
3175
DIA TTS is just amazing - please share your funniest gens (here is mine) 😂
nari-labs/Dia-1.6B
Xenova 
posted an update 22 days ago
view post
Post
2549
Reasoning models like o3 and o4-mini are advancing faster than ever, but imagine what will be possible when they can run locally in your browser! 🤯

Well, with 🤗 Transformers.js, you can do just that! Here's Zyphra's new ZR1 model running at over 100 tokens/second on WebGPU! ⚡️

Giving models access to browser APIs (like File System, Screen Capture, and more) could unlock an entirely new class of web experiences that are personalized, interactive, and run locally in a secure, sandboxed environment.

For now, try out the demo! 👇
webml-community/Zyphra-ZR1-WebGPU
  • 1 reply
·
Wauplin 
posted an update about 1 month ago
view post
Post
2131
‼️ huggingface_hub's v0.30.0 is out with our biggest update of the past two years!

Full release notes: https://github.com/huggingface/huggingface_hub/releases/tag/v0.30.0.

🚀 Ready. Xet. Go!

Xet is a groundbreaking new protocol for storing large objects in Git repositories, designed to replace Git LFS. Unlike LFS, which deduplicates files, Xet operates at the chunk level—making it a game-changer for AI builders collaborating on massive models and datasets. Our Python integration is powered by [xet-core](https://github.com/huggingface/xet-core), a Rust-based package that handles all the low-level details.

You can start using Xet today by installing the optional dependency:

pip install -U huggingface_hub[hf_xet]


With that, you can seamlessly download files from Xet-enabled repositories! And don’t worry—everything remains fully backward-compatible if you’re not ready to upgrade yet.

Blog post: https://huggingface.co/blog/xet-on-the-hub
Docs: https://huggingface.co/docs/hub/en/storage-backends#xet


⚡ Inference Providers

- We’re thrilled to introduce Cerebras and Cohere as official inference providers! This expansion strengthens the Hub as the go-to entry point for running inference on open-weight models.

- Novita is now our 3rd provider to support text-to-video task after Fal.ai and Replicate.

- Centralized billing: manage your budget and set team-wide spending limits for Inference Providers! Available to all Enterprise Hub organizations.

from huggingface_hub import InferenceClient
client = InferenceClient(provider="fal-ai", bill_to="my-cool-company")
image = client.text_to_image(
    "A majestic lion in a fantasy forest",
    model="black-forest-labs/FLUX.1-schnell",
)
image.save("lion.png")


- No more timeouts when generating videos, thanks to async calls. Available right now for Fal.ai, expecting more providers to leverage the same structure very soon!
·
eliebak 
posted an update about 2 months ago
view post
Post
1726
Google just dropped an exciting technical report for the brand-new Gemma3 model! 🚀 Here are my personal notes highlighting the most intriguing architectural innovations, design choices, and insights from this release:

1) Architecture choices:
> No more softcaping, replace by QK-Norm
> Both Pre AND Post Norm
> Wider MLP than Qwen2.5, ~ same depth
> SWA with 5:1 and 1024 (very small and cool ablation on the paper!)
> No MLA to save KV cache, SWA do the job!

2) Long context
> Only increase the rope in the global layer (to 1M)
> Confirmation that it's harder to do long context for smol models, no 128k for the 1B
> Pretrained with 32k context? seems very high
> No yarn nor llama3 like rope extension

3) Distillation
> Only keep te first 256 logits for the teacher
> Ablation on the teacher gap (tl;dr you need some "patience" to see that using a small teacher is better)
> On policy distillation yeahh (by
@agarwl_
et al), not sure if the teacher gap behave the same here, curious if someone have more info?

4) Others
> Checkpoint with QAT, that's very cool
> RL using improve version of BOND, WARM/WARP good excuse to look at
@ramealexandre
papers
> Only use Zero3, no TP/PP if i understand correctly ?
> Training budget relatively similar than gemma2
  • 1 reply
·
clefourrier 
posted an update about 2 months ago
view post
Post
2374
Gemma3 family is out! Reading the tech report, and this section was really interesting to me from a methods/scientific fairness pov.

Instead of doing over-hyped comparisons, they clearly state that **results are reported in a setup which is advantageous to their models**.
(Which everybody does, but people usually don't say)

For a tech report, it makes a lot of sense to report model performance when used optimally!
On leaderboards on the other hand, comparison will be apples to apples, but in a potentially unoptimal way for a given model family (like some user interact sub-optimally with models)

Also contains a cool section (6) on training data memorization rate too! Important to see if your model will output the training data it has seen as such: always an issue for privacy/copyright/... but also very much for evaluation!

Because if your model knows its evals by heart, you're not testing for generalization.
alvarobartt 
posted an update 2 months ago
view post
Post
3101
🔥 Agents can do anything! @microsoft Research just announced the release of Magma 8B!

Magma is a new Visual Language Model (VLM) with 8B parameters for multi-modal agents designed to handle complex interactions across virtual and real environments; and it's MIT licensed!

Magma comes with exciting new features such as:
- Introduces the Set-of-Mark and Trace-of-Mark techniques for fine-tuning
- Leverages a large amount of unlabeled video data to learn the spatial-temporal grounding and planning
- A strong generalization and ability to be fine-tuned for other agentic tasks
- SOTA in different multi-modal benchmarks spanning across UI navigation, robotics manipulation, image / video understanding and spatial understanding and reasoning
- Generates goal-driven visual plans and actions for agentic use cases

Model: microsoft/Magma-8B
Technical Report: Magma: A Foundation Model for Multimodal AI Agents (2502.13130)
Xenova 
posted an update 3 months ago
view post
Post
13271
We did it. Kokoro TTS (v1.0) can now run 100% locally in your browser w/ WebGPU acceleration. Real-time text-to-speech without a server. ⚡️

Generate 10 seconds of speech in ~1 second for $0.

What will you build? 🔥
webml-community/kokoro-webgpu

The most difficult part was getting the model running in the first place, but the next steps are simple:
✂️ Implement sentence splitting, allowing for streamed responses
🌍 Multilingual support (only phonemization left)

Who wants to help?
·
victor 
posted an update 3 months ago
view post
Post
6053
Hey everyone, we've given https://hf.co/spaces page a fresh update!

Smart Search: Now just type what you want to do—like "make a viral meme" or "generate music"—and our search gets it.

New Categories: Check out the cool new filter bar with icons to help you pick a category fast.

Redesigned Space Cards: Reworked a bit to really show off the app descriptions, so you know what each Space does at a glance.

Random Prompt: Need ideas? Hit the dice button for a burst of inspiration.

We’d love to hear what you think—drop us some feedback plz!
·
victor 
posted an update 3 months ago
view post
Post
3149
Finally, an open-source AI that turns your lyrics into full songs is here—meet YuE! Unlike other tools that only create short clips, YuE can make entire songs (up to 5 minutes) with vocals, melody, and instruments all working together. Letsss go!

m-a-p/YuE-s1-7B-anneal-en-cot