The LLM Course

non-profit
Activity Feed

AI & ML interests

A central place for all models and datasets created in the HuggingFace course.

Recent Activity

huggingface-course's activity

julien-cΒ 
posted an update 3 days ago
view post
Post
3509
BOOOOM: Today I'm dropping TINY AGENTS

the 50 lines of code Agent in Javascript πŸ”₯

I spent the last few weeks working on this, so I hope you will like it.

I've been diving into MCP (Model Context Protocol) to understand what the hype was all about.

It is fairly simple, but still quite powerful: MCP is a standard API to expose sets of Tools that can be hooked to LLMs.

But while doing that, came my second realization:

Once you have a MCP Client, an Agent is literally just a while loop on top of it. 🀯

➑️ read it exclusively on the official HF blog: https://huggingface.co/blog/tiny-agents
  • 1 reply
Β·
burtenshawΒ 
updated a Space 3 days ago
burtenshawΒ 
posted an update 4 days ago
view post
Post
2021
The rebooted LLM course starts today with an overhauled chapter 1 on Transformers:

πŸ‘‰ Follow the org to join the course: huggingface-course

We’re starting from the foundations of modern generative AI by looking at transformers. This chapter is expanded in depth and features so contains new material like:

FREE and CERTIFIED exam on fundamentals of transformers
deeper exploration of transformer architectures and attention mechanisms
end -to-end exploration of inference strategies for prefill and decode steps

The course has leveled up in complexity and depth, so this a great time to join in if you want to build you own AI models.
burtenshawΒ 
posted an update 11 days ago
view post
Post
1777
Hacked my presentation building with inference providers, Cohere command a, and sheer simplicity. Use this script if you’re burning too much time on presentations:

πŸ”— https://github.com/burtenshaw/course_generator/blob/main/scripts/create_presentation.py

This is what it does:
- uses command a to generates slides and speaker notes based on some material.
- it renders the material in remark open format and imports all images, tables, etc
- you can then review the slides as markdown and iterate
- export to either pdf or pptx using backslide

πŸš€ Next steps are: add text to speech for the audio and generate a video. This should make Hugging Face educational content scale to a billion AI Learners.
  • 1 reply
Β·
burtenshawΒ 
posted an update about 1 month ago
view post
Post
3081
NEW UNIT in the Hugging Face Reasoning course. We dive deep into the algorithm behind DeepSeek R1 with an advanced and hands-on guide to interpreting GRPO.

πŸ”— reasoning-course

This unit is super useful if you’re tuning models with reinforcement learning. It will help with:

- interpreting loss and reward progression during training runs
- selecting effective parameters for training
- reviewing and defining effective reward functions

This unit also works up smoothly toward the existing practical exercises form @mlabonne and Unsloth.

πŸ“£ Shout out to @ShirinYamani who wrote the unit. Follow for more great content.
  • 1 reply
Β·
burtenshawΒ 
posted an update about 1 month ago
view post
Post
3772
The Hugging Face Agents Course now includes three major agent frameworks!

πŸ”— agents-course

This includes LlamaIndex, LangChain, and our very own smolagents. We've worked to integrate the three frameworks in distinctive ways so that learners can reflect on when and where to use each.

This also means that you can follow the course if you're already familiar with one of these frameworks, and soak up some of the fundamental knowledge in earlier units.

Hopefully, this makes the agents course as open to as many people as possible.
  • 3 replies
Β·
burtenshawΒ 
posted an update about 2 months ago
view post
Post
2468
The open LLM leaderboard is completed, retired, dead, β€˜ascended to a higher plane’. And in its shadow we have an amazing range of leaderboards built and maintained by the community.

In this post, I just want to list some of those great leaderboards that you should bookmark for staying up to date:

- Chatbot Arena LLM Leaderboard is the first port of call for checking out the best model. It’s not the fastest because humans will need to use the models to get scores, but it’s worth the wait. lmarena-ai/chatbot-arena-leaderboard

- OpenVLM Leaderboard is great for getting scores on vision language models opencompass/open_vlm_leaderboard

- Ai2 are doing a great job on RewardBench and I hope they keep it up because reward models are the unsexy workhorse of the field. allenai/reward-bench

- The GAIA leaderboard is great for evaluating agent applications. gaia-benchmark/leaderboard

🀩 This seems like such a sustainable way of building for the long term, where rather than leaning on a single company to evaluate all LLMs, we share the load.
  • 3 replies
Β·
burtenshawΒ 
posted an update about 2 months ago
view post
Post
2191
Still speed running Gemma 3 to think. Today I focused on setting up gpu poor hardware to run GRPO.

This is a plain TRL and PEFT notebook which works on mac silicone or colab T4. This uses the 1b variant of Gemma 3 and a reasoning version of GSM8K dataset.

πŸ§‘β€πŸ³ There’s more still in the oven like releasing models, an Unsloth version, and deeper tutorials, but hopefully this should bootstrap your projects.

Here’s a link to the 1b notebook: https://colab.research.google.com/drive/1mwCy5GQb9xJFSuwt2L_We3eKkVbx2qSt?usp=sharing
  • 1 reply
Β·
burtenshawΒ 
posted an update about 2 months ago
view post
Post
1991
everybody and their dog is fine-tuning Gemma 3 today, so I thought I'd do a longer post on the tips and sharp edges I find. let's go!

1. has to be install everything form main and nightly. this is what I'm working with to get unsloth and TRL running

git+https://github.com/huggingface/transformers@main
git+https://github.com/huggingface/trl.git@main
bitsandbytes
peft


plus this with --no-deps

git+https://github.com/unslothai/unsloth-zoo.git@nightly
git+https://github.com/unslothai/unsloth.git@nightly


2. will brown's code to turn GSM8k into a reasoning dataset is a nice toy experiment https://gist.github.com/willccbb/4676755236bb08cab5f4e54a0475d6fb

3. with a learning rate of 5e-6 rewards and loss stayed flat for the first 100 or so steps.

4. so far none of my runs have undermined the outputs after 1 epoch. therefore, I'm mainly experimenting with bigger LoRA adapters.

from trl import GRPOConfig

training_args = GRPOConfig(
    learning_rate = 5e-6,
    adam_beta1 = 0.9,
    adam_beta2 = 0.99,
    weight_decay = 0.1,
    warmup_ratio = 0.1,
    lr_scheduler_type = "cosine",
    optim = "adamw_8bit",
    logging_steps = 1,
    per_device_train_batch_size = 2,
    gradient_accumulation_steps = 1,
    num_generations = 2,
    max_prompt_length = 256,
    max_completion_length = 1024 - 256,
    num_train_epochs = 1,
    max_steps = 250,
    save_steps = 250,
    max_grad_norm = 0.1,
    report_to = "none",
)


5. vision fine-tuning isn't available in TRL's GRPOTrainer, so stick to text datasets. but no need to load the model differently in transformers or Unsloth

from transformers import AutoModelForImageTextToText

model = AutoModelForImageTextToText.from_pretrained("google/gemma-3-4b-it)


if you want an introduction to GRPO, check out the reasoning course, it walks you through the algorithm, theory, and implementation in a smooth way.

reasoning-course
  • 2 replies
Β·
burtenshawΒ 
posted an update about 2 months ago
view post
Post
2077
Here’s a notebook to make Gemma reason with GRPO & TRL. I made this whilst prepping the next unit of the reasoning course:

In this notebooks I combine together google’s model with some community tooling

- First, I load the model from the Hugging Face hub with transformers’s latest release for Gemma 3
- I use PEFT and bitsandbytes to get it running on Colab
- Then, I took Will Browns processing and reward functions to make reasoning chains from GSM8k
- Finally, I used TRL’s GRPOTrainer to train the model

Next step is to bring Unsloth AI in, then ship it in the reasoning course. Links to notebook below.

https://colab.research.google.com/drive/1Vkl69ytCS3bvOtV9_stRETMthlQXR4wX?usp=sharing
Β·