1. OCR a grocery list or train a titan while sipping coffee? ☕ 2. Camera Snap 📷: Capture life’s chaos—your cat’s face or that weird receipt. Proof you’re a spy! 3. OCR 🔍: PDFs beg for mercy as GPT-4o extracts text. 4. Image Gen 🎨: Prompt “neon superhero me” 5. PDF 📄: Double-page OCR Single-page sniping
Detect hallucinations in answers based on context and questions using ModernBERT with 8192-token context support!
### Model Details - **Model Name**: [lettucedect-large-modernbert-en-v1](KRLabsOrg/lettucedect-large-modernbert-en-v1) - **Organization**: [KRLabsOrg](KRLabsOrg) - **Github**: [https://github.com/KRLabsOrg/LettuceDetect](https://github.com/KRLabsOrg/LettuceDetect) - **Architecture**: ModernBERT (Large) with extended context support up to 8192 tokens - **Task**: Token Classification / Hallucination Detection - **Training Dataset**: [RagTruth](wandb/RAGTruth-processed) - **Language**: English - **Capabilities**: Detects hallucinated spans in answers, provides confidence scores, and calculates average confidence across detected spans.
LettuceDetect excels at processing long documents to determine if an answer aligns with the provided context, making it a powerful tool for ensuring factual accuracy.
🚀 Blast into the future with ZaxxonGalaxian – a thrilling 3D action game where you navigate epic battles through towering 3D cityscapes! Face off against relentless swarm bots, climb the leaderboard, and dominate the skies. awacke1/ZaxxoGalaxian
With the big hype around AI agents these days, I couldn’t stop thinking about how AI agents could truly enhance real-world activities. What sort of applications could we build with those AI agents: agentic RAG? self-correcting text-to-sql? Nah, boring…
Passionate about outdoors, I’ve always dreamed of a tool that could simplify planning mountain trips while accounting for all potential risks. That’s why I built 𝗔𝗹𝗽𝗶𝗻𝗲 𝗔𝗴𝗲𝗻𝘁, a smart assistant designed to help you plan safe and enjoyable itineraries in the French Alps and Pyrenees.
Built using Hugging Face's 𝘀𝗺𝗼𝗹𝗮𝗴𝗲𝗻𝘁𝘀 library, Alpine Agent combines the power of AI with trusted resources like 𝘚𝘬𝘪𝘵𝘰𝘶𝘳.𝘧𝘳 (https://skitour.fr/) and METEO FRANCE. Whether it’s suggesting a route with moderate difficulty or analyzing avalanche risks and weather conditions, this agent dynamically integrates data to deliver personalized recommendations.
In my latest blog post, I share how I developed this project—from defining tools and integrating APIs to selecting the best LLMs like 𝘘𝘸𝘦𝘯2.5-𝘊𝘰𝘥𝘦𝘳-32𝘉-𝘐𝘯𝘴𝘵𝘳𝘶𝘤𝘵, 𝘓𝘭𝘢𝘮𝘢-3.3-70𝘉-𝘐𝘯𝘴𝘵𝘳𝘶𝘤𝘵, or 𝘎𝘗𝘛-4.
🙋🏻♂️Hey there folks , Open LLM Europe just released Lucie 7B-Instruct model , a billingual instruct model trained on open data ! You can check out my unofficial demo here while we wait for the official inference api from the group : Tonic/Lucie-7B hope you like it 🚀
Published a new blogpost 📖 In this blogpost I have gone through the transformers' architecture emphasizing how shapes propagate throughout each layer. 🔗 https://huggingface.co/blog/not-lain/tensor-dims some interesting takeaways :
Deep Research Evaluator was asked: " design a coral defense mechanism that upon sensing say an acid that's causing coral reefs to have a carbon dioxide issue it develops... please create a plan and a design for this\n " It picks these three as best combined solution.
1. [Reef-insight: A framework for reef habitat mapping with clustering methods via remote sensing]... 2. Phone a friend: [Learning to Communicate and Collaborate in a Competitive Multi-Agent Setup to Clean the Ocean from Macroplastics]... 3. World Solve: [Dependence of Physiochemical Features on Marine Chlorophyll Analysis with Learning Techniques]
To design a system that allows coralows coral reefs to respond to increased acidity levels in their environment, we can create a network of pH sensors and dispersal units that can detect changes in pH levels and release a base solution to neutralize the acid.
1. pH Sensors: The first component of the system would be a network of pH sensors placed strategically throughout the coral reef. These sensors would be small, durable, and able to withstand the harsh conditions of the ocean. They would be placed at various depths and locations within the reef to ensure accurate and comprehensive monitoring of pH levels. 2. Base Dispersal Units: Once the pH sensors detect a decrease in pH levels, they would trigger the base dispersal units to release a base solution into the water. These units would be strategically placed around the reef and would be able to release a controlled amount of base solution to neutralize the acidity in the water. 3. Water Dispersal Mechanism: The base dispersal units would be connected to a water dispersal mechanism that would allow the base solution to be distributed evenly around the reef. This could be achieved through a series of pipes or channels that would distribute the base solution in a controlled and targeted manner.