|
---
|
|
base_model: ooliverz/git-large-r-coco-IDB2-V2
|
|
datasets:
|
|
- imagefolder
|
|
library_name: transformers
|
|
license: mit
|
|
tags:
|
|
- generated_from_trainer
|
|
model-index:
|
|
- name: git-large-r-coco-IDB2-V2-IDB_ADv1
|
|
results: []
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# git-large-r-coco-IDB2-V2-IDB_ADv1
|
|
|
|
This model is a fine-tuned version of [ooliverz/git-large-r-coco-IDB2-V2](https://huggingface.co/ooliverz/git-large-r-coco-IDB2-V2) on the imagefolder dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 0.0528
|
|
- Meteor Score: {'meteor': 0.48099544022939256}
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 3e-05
|
|
- train_batch_size: 128
|
|
- eval_batch_size: 128
|
|
- seed: 42
|
|
- gradient_accumulation_steps: 8
|
|
- total_train_batch_size: 1024
|
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
|
- lr_scheduler_type: cosine
|
|
- num_epochs: 100
|
|
- mixed_precision_training: Native AMP
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Meteor Score |
|
|
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------:|
|
|
| 0.0752 | 5.0 | 5 | 0.0707 | {'meteor': 0.45989970933738533} |
|
|
| 0.0562 | 10.0 | 10 | 0.0602 | {'meteor': 0.45979149509400175} |
|
|
| 0.0436 | 15.0 | 15 | 0.0567 | {'meteor': 0.4674583504146179} |
|
|
| 0.0346 | 20.0 | 20 | 0.0530 | {'meteor': 0.4749086336659367} |
|
|
| 0.028 | 25.0 | 25 | 0.0524 | {'meteor': 0.4770807569254236} |
|
|
| 0.0232 | 30.0 | 30 | 0.0512 | {'meteor': 0.4786903333280637} |
|
|
| 0.0196 | 35.0 | 35 | 0.0508 | {'meteor': 0.48157768145979507} |
|
|
| 0.0171 | 40.0 | 40 | 0.0512 | {'meteor': 0.48242689217394297} |
|
|
| 0.0152 | 45.0 | 45 | 0.0515 | {'meteor': 0.48273124613648705} |
|
|
| 0.0139 | 50.0 | 50 | 0.0517 | {'meteor': 0.4813023884740672} |
|
|
| 0.0129 | 55.0 | 55 | 0.0519 | {'meteor': 0.48118479220464483} |
|
|
| 0.0122 | 60.0 | 60 | 0.0521 | {'meteor': 0.48099544022939256} |
|
|
| 0.0115 | 65.0 | 65 | 0.0522 | {'meteor': 0.4803039037483629} |
|
|
| 0.0112 | 70.0 | 70 | 0.0525 | {'meteor': 0.4806395037000483} |
|
|
| 0.0106 | 75.0 | 75 | 0.0527 | {'meteor': 0.48061573437081007} |
|
|
| 0.0105 | 80.0 | 80 | 0.0528 | {'meteor': 0.48061573437081007} |
|
|
| 0.0105 | 85.0 | 85 | 0.0528 | {'meteor': 0.4809716709001543} |
|
|
| 0.0105 | 90.0 | 90 | 0.0528 | {'meteor': 0.4809716709001543} |
|
|
| 0.0103 | 95.0 | 95 | 0.0528 | {'meteor': 0.48099544022939256} |
|
|
| 0.0102 | 100.0 | 100 | 0.0528 | {'meteor': 0.48099544022939256} |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.46.1
|
|
- Pytorch 2.2.1+cu121
|
|
- Datasets 2.18.0
|
|
- Tokenizers 0.20.2
|
|
|