|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Image processor class for LLaVa-Onevision.""" |
|
|
|
import math |
|
from typing import Dict, Iterable, List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
|
|
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict, select_best_resolution |
|
from transformers.image_transforms import ( |
|
PaddingMode, |
|
convert_to_rgb, |
|
pad, |
|
resize, |
|
to_channel_dimension_format, |
|
) |
|
from transformers.image_utils import ( |
|
OPENAI_CLIP_MEAN, |
|
OPENAI_CLIP_STD, |
|
IMAGENET_STANDARD_MEAN, |
|
IMAGENET_STANDARD_STD, |
|
ChannelDimension, |
|
ImageInput, |
|
PILImageResampling, |
|
get_image_size, |
|
infer_channel_dimension_format, |
|
is_scaled_image, |
|
make_flat_list_of_images, |
|
to_numpy_array, |
|
valid_images, |
|
validate_preprocess_arguments, |
|
) |
|
from transformers.utils import TensorType, is_vision_available, logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
if is_vision_available(): |
|
from PIL import Image |
|
|
|
def crop(img: np.ndarray, left: int, top: int, right: int, bottom: int, input_data_format: ChannelDimension) -> np.ndarray: |
|
"""Crop the given numpy array. |
|
|
|
Args: |
|
img (np.ndarray): Image to be cropped. Format should be (H, W, C) or (H, W). |
|
left (int): The left coordinate of the crop box. |
|
top (int): The top coordinate of the crop box. |
|
right (int): The right coordinate of the crop box. |
|
bottom (int): The bottom coordinate of the crop box. |
|
|
|
Returns: |
|
np.ndarray: Cropped image. |
|
""" |
|
if not isinstance(img, np.ndarray): |
|
raise TypeError('img should be numpy array. Got {}'.format(type(img))) |
|
|
|
if img.ndim not in [2, 3]: |
|
raise ValueError('Image should have 2 or 3 dimensions. Got {}'.format(img.ndim)) |
|
|
|
if input_data_format == ChannelDimension.LAST: |
|
img_height = img.shape[0] |
|
img_width = img.shape[1] |
|
else: |
|
img_height = img.shape[1] |
|
img_width = img.shape[2] |
|
|
|
if top < 0 or left < 0 or bottom > img_height or right > img_width: |
|
raise ValueError('Crop coordinates out of bounds') |
|
|
|
if top >= bottom or left >= right: |
|
raise ValueError('Invalid crop coordinates') |
|
if input_data_format == ChannelDimension.LAST: |
|
return img[top:bottom, left:right, :] |
|
else: |
|
return img[:, top:bottom, left:right] |
|
|
|
|
|
def divide_to_patches(image: np.array, patch_size: int, input_data_format) -> List[np.array]: |
|
""" |
|
Divides an image into patches of a specified size. |
|
|
|
Args: |
|
image (`np.array`): |
|
The input image. |
|
patch_size (`int`): |
|
The size of each patch. |
|
input_data_format (`ChannelDimension` or `str`): |
|
The channel dimension format of the input image. |
|
|
|
Returns: |
|
list: A list of np.array representing the patches. |
|
""" |
|
patches = [] |
|
height, width = get_image_size(image, channel_dim=input_data_format) |
|
for i in range(0, height, patch_size): |
|
for j in range(0, width, patch_size): |
|
if input_data_format == ChannelDimension.LAST: |
|
patch = image[i : i + patch_size, j : j + patch_size] |
|
else: |
|
patch = image[:, i : i + patch_size, j : j + patch_size] |
|
patches.append(patch) |
|
|
|
return patches |
|
|
|
|
|
|
|
def expand_to_square(image: np.array, background_color, input_data_format) -> np.array: |
|
""" |
|
Expands an image to a square by adding a background color. |
|
""" |
|
|
|
height, width = get_image_size(image, channel_dim=input_data_format) |
|
if width == height: |
|
return image |
|
elif width > height: |
|
result = np.ones((width, width, image.shape[2]), dtype=image.dtype) * background_color |
|
result[(width - height) // 2 : (width - height) // 2 + height, :] = image |
|
return result |
|
else: |
|
result = np.ones((height, height, image.shape[2]), dtype=image.dtype) * background_color |
|
result[:, (height - width) // 2 : (height - width) // 2 + width] = image |
|
return result |
|
|
|
|
|
|
|
def _get_patch_output_size(image, target_resolution, input_data_format): |
|
original_height, original_width = get_image_size(image, channel_dim=input_data_format) |
|
target_height, target_width = target_resolution |
|
|
|
scale_w = target_width / original_width |
|
scale_h = target_height / original_height |
|
|
|
if scale_w < scale_h: |
|
new_width = target_width |
|
new_height = min(math.ceil(original_height * scale_w), target_height) |
|
else: |
|
new_height = target_height |
|
new_width = min(math.ceil(original_width * scale_h), target_width) |
|
|
|
return new_height, new_width |
|
|
|
|
|
class Eagle2ImageProcessor(BaseImageProcessor): |
|
r""" |
|
Constructs a LLaVa-Onevision image processor. Based on [`SiglipImageProcessor`] with incorporation of processing each video frame. |
|
|
|
Args: |
|
do_resize (`bool`, *optional*, defaults to `True`): |
|
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by |
|
`do_resize` in the `preprocess` method. |
|
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`): |
|
Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with |
|
the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess` |
|
method. |
|
image_grid_pinpoints (`List` *optional*, defaults to `[[672, 336], [336, 672], [672, 672], [336, 1008], [1008, 336]]`): |
|
A list of possible resolutions to use for processing high resolution images. The best resolution is selected |
|
based on the original size of the image. Can be overridden by `image_grid_pinpoints` in the `preprocess` |
|
method. Not used for processinf videos. |
|
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): |
|
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method. |
|
do_rescale (`bool`, *optional*, defaults to `True`): |
|
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in |
|
the `preprocess` method. |
|
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): |
|
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess` |
|
method. |
|
do_normalize (`bool`, *optional*, defaults to `True`): |
|
Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method. |
|
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`): |
|
Mean to use if normalizing the image. This is a float or list of floats the length of the number of |
|
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. |
|
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`): |
|
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the |
|
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. |
|
Can be overridden by the `image_std` parameter in the `preprocess` method. |
|
do_pad (`bool`, *optional*, defaults to `True`): |
|
Whether to pad the image. If `True`, will pad the patch dimension of the images in the batch to the largest |
|
number of patches in the batch. Padding will be applied to the bottom and right with zeros. |
|
do_convert_rgb (`bool`, *optional*, defaults to `True`): |
|
Whether to convert the image to RGB. |
|
""" |
|
|
|
model_input_names = ["pixel_values_videos"] |
|
|
|
def __init__( |
|
self, |
|
do_resize: bool = True, |
|
size: Dict[str, int] = None, |
|
resample: PILImageResampling = PILImageResampling.BICUBIC, |
|
do_rescale: bool = True, |
|
rescale_factor: Union[int, float] = 1 / 255, |
|
do_normalize: bool = True, |
|
image_mean: Optional[Union[float, List[float]]] = None, |
|
image_std: Optional[Union[float, List[float]]] = None, |
|
do_pad: Optional[bool] = True, |
|
do_convert_rgb: bool = True, |
|
min_dynamic_tiles: int = 1, |
|
max_dynamic_tiles: int = 12, |
|
use_thumbnail: bool = True, |
|
pad_during_tiling: bool = False, |
|
**kwargs, |
|
) -> None: |
|
super().__init__(**kwargs) |
|
size = size if size is not None else {"height": 384, "width": 384} |
|
size = get_size_dict(size, default_to_square=False) |
|
|
|
self.do_resize = do_resize |
|
self.size = size |
|
self.resample = resample |
|
self.do_rescale = do_rescale |
|
self.rescale_factor = rescale_factor |
|
self.do_normalize = do_normalize |
|
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN |
|
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD |
|
self.do_pad = do_pad |
|
self.do_convert_rgb = do_convert_rgb |
|
self.min_dynamic_tiles = min_dynamic_tiles |
|
self.max_dynamic_tiles = max_dynamic_tiles |
|
self.use_thumbnail = use_thumbnail |
|
self.pad_during_tiling = pad_during_tiling |
|
|
|
|
|
def pad( |
|
self, |
|
image: np.ndarray, |
|
padding: Union[int, Tuple[int, int], Iterable[Tuple[int, int]]], |
|
mode: PaddingMode = PaddingMode.CONSTANT, |
|
constant_values: Union[float, Iterable[float]] = 0.0, |
|
data_format: Optional[Union[str, ChannelDimension]] = None, |
|
input_data_format: Optional[Union[str, ChannelDimension]] = None, |
|
) -> np.ndarray: |
|
""" |
|
Pads the `image` with the specified `padding` and `mode`. Padding can be in the (`height`, `width`) |
|
dimension of in the (`num_patches`) dimension. In the second case an iterable if tuples is expected |
|
as input. |
|
|
|
Args: |
|
image (`np.ndarray`): |
|
The image to pad. |
|
padding (`int` or `Tuple[int, int]` or `Iterable[Tuple[int, int]]`): |
|
Padding to apply to the edges of the height, width axes. Can be one of three formats: |
|
- `((before_height, after_height), (before_width, after_width))` unique pad widths for each axis. |
|
- `((before, after),)` yields same before and after pad for height and width. |
|
- `(pad,)` or int is a shortcut for before = after = pad width for all axes. |
|
mode (`PaddingMode`): |
|
The padding mode to use. Can be one of: |
|
- `"constant"`: pads with a constant value. |
|
- `"reflect"`: pads with the reflection of the vector mirrored on the first and last values of the |
|
vector along each axis. |
|
- `"replicate"`: pads with the replication of the last value on the edge of the array along each axis. |
|
- `"symmetric"`: pads with the reflection of the vector mirrored along the edge of the array. |
|
constant_values (`float` or `Iterable[float]`, *optional*): |
|
The value to use for the padding if `mode` is `"constant"`. |
|
data_format (`str` or `ChannelDimension`, *optional*): |
|
The channel dimension format for the output image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
If unset, will use same as the input image. |
|
input_data_format (`str` or `ChannelDimension`, *optional*): |
|
The channel dimension format for the input image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
If unset, will use the inferred format of the input image. |
|
|
|
Returns: |
|
`np.ndarray`: The padded image. |
|
|
|
""" |
|
|
|
|
|
if isinstance(padding, int) or len(padding) != 4: |
|
return pad(image, padding, mode, constant_values, data_format, input_data_format) |
|
|
|
if input_data_format is None: |
|
input_data_format = infer_channel_dimension_format(image) |
|
if mode == PaddingMode.CONSTANT: |
|
image = np.pad(image, padding, mode="constant", constant_values=constant_values) |
|
elif mode == PaddingMode.REFLECT: |
|
image = np.pad(image, padding, mode="reflect") |
|
elif mode == PaddingMode.REPLICATE: |
|
image = np.pad(image, padding, mode="edge") |
|
elif mode == PaddingMode.SYMMETRIC: |
|
image = np.pad(image, padding, mode="symmetric") |
|
else: |
|
raise ValueError(f"Invalid padding mode: {mode}") |
|
image = ( |
|
to_channel_dimension_format(image, data_format, input_data_format) if data_format is not None else image |
|
) |
|
return image |
|
|
|
|
|
def _resize_for_patching( |
|
self, image: np.array, target_resolution: tuple, resample, input_data_format: ChannelDimension |
|
) -> np.array: |
|
""" |
|
Resizes an image to a target resolution while maintaining aspect ratio. |
|
|
|
Args: |
|
image (np.array): |
|
The input image. |
|
target_resolution (tuple): |
|
The target resolution (height, width) of the image. |
|
resample (`PILImageResampling`): |
|
Resampling filter to use if resizing the image. |
|
input_data_format (`ChannelDimension` or `str`): |
|
The channel dimension format of the input image. |
|
|
|
Returns: |
|
np.array: The resized and padded image. |
|
""" |
|
|
|
new_height, new_width = _get_patch_output_size(image, target_resolution, input_data_format) |
|
|
|
resized_image = resize(image, (new_height, new_width), resample=resample, input_data_format=input_data_format) |
|
|
|
return resized_image |
|
|
|
|
|
def _pad_for_patching( |
|
self, image: np.array, target_resolution: tuple, input_data_format: ChannelDimension |
|
) -> np.array: |
|
""" |
|
Pad an image to a target resolution while maintaining aspect ratio. |
|
""" |
|
target_height, target_width = target_resolution |
|
new_height, new_width = _get_patch_output_size(image, target_resolution, input_data_format) |
|
|
|
paste_x = (target_width - new_width) // 2 |
|
paste_y = (target_height - new_height) // 2 |
|
|
|
padded_image = self.pad(image, padding=((paste_y, paste_y), (paste_x, paste_x))) |
|
|
|
return padded_image |
|
|
|
|
|
def find_closest_aspect_ratio(self, aspect_ratio, target_ratios, width, height, image_size): |
|
""" |
|
previous version mainly foucs on ratio. |
|
We also consider area ratio here. |
|
""" |
|
best_factor = float('-inf') |
|
best_ratio = (1, 1) |
|
area = width * height |
|
for ratio in target_ratios: |
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
area_ratio = (ratio[0]*ratio[1]*image_size*image_size)/ area |
|
""" |
|
new area > 60% of original image area is enough. |
|
""" |
|
factor_based_on_area_n_ratio = min((ratio[0]*ratio[1]*image_size*image_size)/ area, 0.6)* \ |
|
min(target_aspect_ratio/aspect_ratio, aspect_ratio/target_aspect_ratio) |
|
|
|
if factor_based_on_area_n_ratio > best_factor: |
|
best_factor = factor_based_on_area_n_ratio |
|
best_ratio = ratio |
|
|
|
return best_ratio |
|
|
|
|
|
def get_image_patches( |
|
self, |
|
image: np.array, |
|
min_num: int, |
|
max_num: int, |
|
size: tuple, |
|
tile_size: int, |
|
use_thumbnail: bool, |
|
resample: PILImageResampling, |
|
data_format: ChannelDimension, |
|
input_data_format: ChannelDimension, |
|
): |
|
image_size = get_image_size(image, channel_dim=input_data_format) |
|
orig_height, orig_width = image_size |
|
aspect_ratio = orig_width / orig_height |
|
|
|
|
|
target_ratios = set( |
|
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if |
|
i * j <= max_num and i * j >= min_num) |
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
|
|
target_aspect_ratio = self.find_closest_aspect_ratio( |
|
aspect_ratio, target_ratios, orig_width, orig_height, tile_size) |
|
|
|
|
|
target_width = tile_size * target_aspect_ratio[0] |
|
target_height = tile_size * target_aspect_ratio[1] |
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
if self.pad_during_tiling: |
|
resized_image = self._resize_for_patching( |
|
image, (target_height, target_width), resample=resample, input_data_format=input_data_format |
|
) |
|
padded_image = self._pad_for_patching(resized_image, (target_height, target_width), input_data_format=input_data_format) |
|
image_used_to_split = padded_image |
|
else: |
|
image_used_to_split = resize(image, (target_height, target_width), resample=resample, input_data_format=input_data_format) |
|
|
|
processed_tiles = [] |
|
for i in range(blocks): |
|
box = ( |
|
(i % (target_width // tile_size)) * tile_size, |
|
(i // (target_width // tile_size)) * tile_size, |
|
((i % (target_width // tile_size)) + 1) * tile_size, |
|
((i // (target_width // tile_size)) + 1) * tile_size |
|
) |
|
|
|
split_img = crop(image_used_to_split, box[0], box[1], box[2], box[3], input_data_format) |
|
processed_tiles.append(split_img) |
|
assert len(processed_tiles) == blocks |
|
|
|
if use_thumbnail and len(processed_tiles) != 1: |
|
thumbnail_img = resize(image, (tile_size, tile_size), resample=resample, input_data_format=input_data_format) |
|
processed_tiles.append(thumbnail_img) |
|
|
|
|
|
processed_tiles = [ |
|
to_channel_dimension_format(tile, channel_dim=data_format, input_channel_dim=input_data_format) |
|
for tile in processed_tiles |
|
] |
|
return processed_tiles |
|
|
|
|
|
|
|
def _pad_for_batching( |
|
self, |
|
pixel_values: List[np.ndarray], |
|
data_format: Optional[Union[str, ChannelDimension]] = None, |
|
input_data_format: Optional[Union[str, ChannelDimension]] = None, |
|
): |
|
""" |
|
Pads images on the `num_of_patches` dimension with zeros to form a batch of same number of patches. |
|
|
|
Args: |
|
pixel_values (`List[np.ndarray]`): |
|
An array of pixel values of each images of shape (`batch_size`, `num_patches`, `image_in_3D`) |
|
data_format (`str` or `ChannelDimension`, *optional*): |
|
The channel dimension format for the output image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
If unset, will use same as the input image. |
|
input_data_format (`str` or `ChannelDimension`, *optional*): |
|
The channel dimension format for the input image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
If unset, will use the inferred format of the input image. |
|
|
|
Returns: |
|
List[`np.ndarray`]: The padded images. |
|
""" |
|
max_patch = max(len(x) for x in pixel_values) |
|
pixel_values = [ |
|
self.pad( |
|
image, |
|
padding=((0, max_patch - image.shape[0]), (0, 0), (0, 0), (0, 0)), |
|
data_format=data_format, |
|
input_data_format=input_data_format, |
|
) |
|
for image in pixel_values |
|
] |
|
|
|
return pixel_values |
|
|
|
def _preprocess( |
|
self, |
|
images: ImageInput, |
|
do_resize: Optional[bool] = None, |
|
size: Dict[str, int] = None, |
|
resample: PILImageResampling = None, |
|
do_rescale: Optional[bool] = None, |
|
rescale_factor: Optional[float] = None, |
|
do_normalize: Optional[bool] = None, |
|
image_mean: Optional[Union[float, List[float]]] = None, |
|
image_std: Optional[Union[float, List[float]]] = None, |
|
do_convert_rgb: Optional[bool] = None, |
|
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, |
|
input_data_format: Optional[Union[str, ChannelDimension]] = None, |
|
) -> Image.Image: |
|
""" |
|
Args: |
|
images (`ImageInput`): |
|
Batch of frames (one video) to preprocess. Expects a batch of frames with pixel values ranging from 0 to 255. If |
|
passing in images with pixel values between 0 and 1, set `do_rescale=False`. |
|
do_resize (`bool`, *optional*, defaults to `self.do_resize`): |
|
Whether to resize the image. |
|
size (`Dict[str, int]`, *optional*, defaults to `self.size`): |
|
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with |
|
the longest edge resized to keep the input aspect ratio. |
|
resample (`int`, *optional*, defaults to `self.resample`): |
|
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only |
|
has an effect if `do_resize` is set to `True`. |
|
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): |
|
Whether to rescale the image. |
|
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): |
|
Rescale factor to rescale the image by if `do_rescale` is set to `True`. |
|
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): |
|
Whether to normalize the image. |
|
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): |
|
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. |
|
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): |
|
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to |
|
`True`. |
|
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): |
|
The channel dimension format for the output image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
- Unset: Use the channel dimension format of the input image. |
|
input_data_format (`ChannelDimension` or `str`, *optional*): |
|
The channel dimension format for the input image. If unset, the channel dimension format is inferred |
|
from the input image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. |
|
""" |
|
if do_resize: |
|
assert False, 'do_resize is not supported' |
|
images = [ |
|
resize(image=image, size=size, resample=resample, input_data_format=input_data_format) |
|
for image in images |
|
] |
|
|
|
if do_rescale: |
|
images = [ |
|
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) |
|
for image in images |
|
] |
|
|
|
if do_normalize: |
|
images = [ |
|
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) |
|
for image in images |
|
] |
|
|
|
images = [ |
|
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images |
|
] |
|
|
|
return images |
|
|
|
def preprocess( |
|
self, |
|
images: ImageInput, |
|
do_resize: Optional[bool] = None, |
|
size: Dict[str, int] = None, |
|
resample: PILImageResampling = None, |
|
do_rescale: Optional[bool] = None, |
|
rescale_factor: Optional[float] = None, |
|
do_normalize: Optional[bool] = None, |
|
image_mean: Optional[Union[float, List[float]]] = None, |
|
image_std: Optional[Union[float, List[float]]] = None, |
|
do_pad: Optional[bool] = None, |
|
do_convert_rgb: Optional[bool] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, |
|
input_data_format: Optional[Union[str, ChannelDimension]] = None, |
|
): |
|
""" |
|
Args: |
|
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): |
|
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch |
|
tensor. Both channels-first and channels-last formats are supported. |
|
do_resize (`bool`, *optional*, defaults to `self.do_resize`): |
|
Whether to resize the image. |
|
size (`Dict[str, int]`, *optional*, defaults to `self.size`): |
|
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with |
|
the longest edge resized to keep the input aspect ratio. |
|
resample (`int`, *optional*, defaults to `self.resample`): |
|
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only |
|
has an effect if `do_resize` is set to `True`. |
|
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): |
|
Whether to rescale the image. |
|
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): |
|
Rescale factor to rescale the image by if `do_rescale` is set to `True`. |
|
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): |
|
Whether to normalize the image. |
|
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): |
|
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. |
|
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): |
|
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to |
|
`True`. |
|
do_pad (`bool`, *optional*, defaults to `self.do_pad`): |
|
Whether to pad the image. If `True`, will pad the patch dimension of the images in the batch to the largest |
|
number of patches in the batch. Padding will be applied to the bottom and right with zeros. |
|
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): |
|
Whether to convert the image to RGB. |
|
return_tensors (`str` or `TensorType`, *optional*): |
|
The type of tensors to return. Can be one of: |
|
- Unset: Return a list of `np.ndarray`. |
|
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. |
|
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. |
|
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. |
|
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. |
|
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): |
|
The channel dimension format for the output image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
- Unset: Use the channel dimension format of the input image. |
|
input_data_format (`ChannelDimension` or `str`, *optional*): |
|
The channel dimension format for the input image. If unset, the channel dimension format is inferred |
|
from the input image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. |
|
|
|
""" |
|
do_resize = do_resize if do_resize is not None else self.do_resize |
|
size = size if size is not None else self.size |
|
size = get_size_dict(size, default_to_square=False) |
|
resample = resample if resample is not None else self.resample |
|
do_rescale = do_rescale if do_rescale is not None else self.do_rescale |
|
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor |
|
do_normalize = do_normalize if do_normalize is not None else self.do_normalize |
|
image_mean = image_mean if image_mean is not None else self.image_mean |
|
image_std = image_std if image_std is not None else self.image_std |
|
do_pad = do_pad if do_pad is not None else self.do_pad |
|
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb |
|
|
|
images = make_flat_list_of_images(images) |
|
|
|
if not valid_images(images): |
|
raise ValueError( |
|
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " |
|
"torch.Tensor, tf.Tensor or jax.ndarray." |
|
) |
|
|
|
validate_preprocess_arguments( |
|
do_rescale=do_rescale, |
|
rescale_factor=rescale_factor, |
|
do_normalize=do_normalize, |
|
image_mean=image_mean, |
|
image_std=image_std, |
|
do_resize=do_resize, |
|
size=size, |
|
resample=resample, |
|
) |
|
|
|
if do_convert_rgb: |
|
images = [convert_to_rgb(image) for image in images] |
|
|
|
|
|
images = [to_numpy_array(image) for image in images] |
|
|
|
if do_rescale and is_scaled_image(images[0]): |
|
logger.warning_once( |
|
"It looks like you are trying to rescale already rescaled images. If the input" |
|
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." |
|
) |
|
|
|
if input_data_format is None: |
|
|
|
input_data_format = infer_channel_dimension_format(images[0]) |
|
|
|
processed_images = [] |
|
image_sizes = [get_image_size(image, channel_dim=input_data_format) for image in images] |
|
for image in images: |
|
|
|
|
|
size_tuple = ( |
|
(size["height"], size["width"]) |
|
if "height" in size and "width" in size |
|
else (size["shortest_edge"], size["shortest_edge"]) |
|
) |
|
image_patches = self.get_image_patches( |
|
image, |
|
min_num=self.min_dynamic_tiles, |
|
max_num=self.max_dynamic_tiles, |
|
size=size_tuple, |
|
tile_size=size["height"], |
|
resample=resample, |
|
data_format=input_data_format, |
|
input_data_format=input_data_format, |
|
use_thumbnail=self.use_thumbnail, |
|
) |
|
|
|
|
|
pixel_values = self._preprocess( |
|
image_patches, |
|
do_resize=do_resize, |
|
size=size_tuple, |
|
resample=resample, |
|
do_rescale=do_rescale, |
|
rescale_factor=rescale_factor, |
|
do_normalize=do_normalize, |
|
image_mean=image_mean, |
|
image_std=image_std, |
|
data_format=data_format, |
|
input_data_format=input_data_format, |
|
) |
|
pixel_values = np.array(pixel_values) |
|
processed_images.append(pixel_values) |
|
|
|
if do_pad: |
|
processed_images = self._pad_for_batching(processed_images) |
|
|
|
return BatchFeature( |
|
data={"pixel_values": processed_images, "image_sizes": image_sizes}, tensor_type=return_tensors |
|
) |
|
|
|
|
|
__all__ = ["Eagle2ImageProcessor"] |