File size: 35,107 Bytes
08b8b31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for LLaVa-Onevision."""

import math
from typing import Dict, Iterable, List, Optional, Tuple, Union

import numpy as np

from transformers.image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict, select_best_resolution
from transformers.image_transforms import (
    PaddingMode,
    convert_to_rgb,
    pad,
    resize,
    to_channel_dimension_format,
)
from transformers.image_utils import (
    OPENAI_CLIP_MEAN,
    OPENAI_CLIP_STD,
    IMAGENET_STANDARD_MEAN, # 0.5, 0.5, 0.5
    IMAGENET_STANDARD_STD, # 0.5, 0.5, 0.5
    ChannelDimension,
    ImageInput,
    PILImageResampling,
    get_image_size,
    infer_channel_dimension_format,
    is_scaled_image,
    make_flat_list_of_images,
    to_numpy_array,
    valid_images,
    validate_preprocess_arguments,
)
from transformers.utils import TensorType, is_vision_available, logging


logger = logging.get_logger(__name__)


if is_vision_available():
    from PIL import Image

def crop(img: np.ndarray, left: int, top: int, right: int, bottom: int, input_data_format: ChannelDimension) -> np.ndarray:
    """Crop the given numpy array.
    
    Args:
        img (np.ndarray): Image to be cropped. Format should be (H, W, C) or (H, W).
        left (int): The left coordinate of the crop box.
        top (int): The top coordinate of the crop box.
        right (int): The right coordinate of the crop box.
        bottom (int): The bottom coordinate of the crop box.
        
    Returns:
        np.ndarray: Cropped image.
    """
    if not isinstance(img, np.ndarray):
        raise TypeError('img should be numpy array. Got {}'.format(type(img)))
    
    if img.ndim not in [2, 3]:
        raise ValueError('Image should have 2 or 3 dimensions. Got {}'.format(img.ndim))
    
    if input_data_format == ChannelDimension.LAST:
        img_height = img.shape[0]
        img_width = img.shape[1]
    else:
        img_height = img.shape[1]
        img_width = img.shape[2]
    
    if top < 0 or left < 0 or bottom > img_height or right > img_width:
        raise ValueError('Crop coordinates out of bounds')
    
    if top >= bottom or left >= right:
        raise ValueError('Invalid crop coordinates')
    if input_data_format == ChannelDimension.LAST:
        return img[top:bottom, left:right, :]
    else:
        return img[:, top:bottom, left:right]

# Copied from transformers.models.llava_next.image_processing_llava_next.divide_to_patches
def divide_to_patches(image: np.array, patch_size: int, input_data_format) -> List[np.array]:
    """
    Divides an image into patches of a specified size.

    Args:
        image (`np.array`):
            The input image.
        patch_size (`int`):
            The size of each patch.
        input_data_format (`ChannelDimension` or `str`):
            The channel dimension format of the input image.

    Returns:
        list: A list of np.array representing the patches.
    """
    patches = []
    height, width = get_image_size(image, channel_dim=input_data_format)
    for i in range(0, height, patch_size):
        for j in range(0, width, patch_size):
            if input_data_format == ChannelDimension.LAST:
                patch = image[i : i + patch_size, j : j + patch_size]
            else:
                patch = image[:, i : i + patch_size, j : j + patch_size]
            patches.append(patch)

    return patches


# Copied from transformers.models.llava_next.image_processing_llava_next.expand_to_square
def expand_to_square(image: np.array, background_color, input_data_format) -> np.array:
    """
    Expands an image to a square by adding a background color.
    """

    height, width = get_image_size(image, channel_dim=input_data_format)
    if width == height:
        return image
    elif width > height:
        result = np.ones((width, width, image.shape[2]), dtype=image.dtype) * background_color
        result[(width - height) // 2 : (width - height) // 2 + height, :] = image
        return result
    else:
        result = np.ones((height, height, image.shape[2]), dtype=image.dtype) * background_color
        result[:, (height - width) // 2 : (height - width) // 2 + width] = image
        return result


# Copied from transformers.models.llava_next.image_processing_llava_next._get_patch_output_size
def _get_patch_output_size(image, target_resolution, input_data_format):
    original_height, original_width = get_image_size(image, channel_dim=input_data_format)
    target_height, target_width = target_resolution

    scale_w = target_width / original_width
    scale_h = target_height / original_height

    if scale_w < scale_h:
        new_width = target_width
        new_height = min(math.ceil(original_height * scale_w), target_height)
    else:
        new_height = target_height
        new_width = min(math.ceil(original_width * scale_h), target_width)

    return new_height, new_width


class Eagle2ImageProcessor(BaseImageProcessor):
    r"""
    Constructs a LLaVa-Onevision image processor. Based on [`SiglipImageProcessor`] with incorporation of processing each video frame.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
            `do_resize` in the `preprocess` method.
        size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
            Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
            the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
            method.
        image_grid_pinpoints (`List` *optional*, defaults to `[[672, 336], [336, 672], [672, 672], [336, 1008], [1008, 336]]`):
            A list of possible resolutions to use for processing high resolution images. The best resolution is selected
            based on the original size of the image. Can be overridden by `image_grid_pinpoints` in the `preprocess`
            method. Not used for processinf videos.
        resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
            Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
        do_rescale (`bool`, *optional*, defaults to `True`):
            Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
            the `preprocess` method.
        rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
            Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
            method.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
        image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
            Mean to use if normalizing the image. This is a float or list of floats the length of the number of
            channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
        image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
            Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
            number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
            Can be overridden by the `image_std` parameter in the `preprocess` method.
        do_pad (`bool`, *optional*, defaults to `True`):
                Whether to pad the image. If `True`, will pad the patch dimension of the images in the batch to the largest
                number of patches in the batch. Padding will be applied to the bottom and right with zeros.
        do_convert_rgb (`bool`, *optional*, defaults to `True`):
            Whether to convert the image to RGB.
    """

    model_input_names = ["pixel_values_videos"]

    def __init__(
        self,
        do_resize: bool = True,
        size: Dict[str, int] = None,
        resample: PILImageResampling = PILImageResampling.BICUBIC,
        do_rescale: bool = True,
        rescale_factor: Union[int, float] = 1 / 255,
        do_normalize: bool = True,
        image_mean: Optional[Union[float, List[float]]] = None,
        image_std: Optional[Union[float, List[float]]] = None,
        do_pad: Optional[bool] = True,
        do_convert_rgb: bool = True,
        min_dynamic_tiles: int = 1,
        max_dynamic_tiles: int = 12,
        use_thumbnail: bool = True,
        pad_during_tiling: bool = False,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)
        size = size if size is not None else {"height": 384, "width": 384}
        size = get_size_dict(size, default_to_square=False)

        self.do_resize = do_resize
        self.size = size
        self.resample = resample
        self.do_rescale = do_rescale
        self.rescale_factor = rescale_factor
        self.do_normalize = do_normalize
        self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
        self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
        self.do_pad = do_pad
        self.do_convert_rgb = do_convert_rgb
        self.min_dynamic_tiles = min_dynamic_tiles
        self.max_dynamic_tiles = max_dynamic_tiles
        self.use_thumbnail = use_thumbnail
        self.pad_during_tiling = pad_during_tiling
        
    # Copied from transformers.models.llava_next.image_processing_llava_next.LlavaNextImageProcessor.pad
    def pad(
        self,
        image: np.ndarray,
        padding: Union[int, Tuple[int, int], Iterable[Tuple[int, int]]],
        mode: PaddingMode = PaddingMode.CONSTANT,
        constant_values: Union[float, Iterable[float]] = 0.0,
        data_format: Optional[Union[str, ChannelDimension]] = None,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
    ) -> np.ndarray:
        """
        Pads the `image` with the specified `padding` and `mode`. Padding can be in the (`height`, `width`)
        dimension of in the (`num_patches`) dimension. In the second case an iterable if tuples is expected
        as input.

        Args:
            image (`np.ndarray`):
                The image to pad.
            padding (`int` or `Tuple[int, int]` or `Iterable[Tuple[int, int]]`):
                Padding to apply to the edges of the height, width axes. Can be one of three formats:
                - `((before_height, after_height), (before_width, after_width))` unique pad widths for each axis.
                - `((before, after),)` yields same before and after pad for height and width.
                - `(pad,)` or int is a shortcut for before = after = pad width for all axes.
            mode (`PaddingMode`):
                The padding mode to use. Can be one of:
                    - `"constant"`: pads with a constant value.
                    - `"reflect"`: pads with the reflection of the vector mirrored on the first and last values of the
                    vector along each axis.
                    - `"replicate"`: pads with the replication of the last value on the edge of the array along each axis.
                    - `"symmetric"`: pads with the reflection of the vector mirrored along the edge of the array.
            constant_values (`float` or `Iterable[float]`, *optional*):
                The value to use for the padding if `mode` is `"constant"`.
            data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format for the output image. Can be one of:
                    - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                    - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                If unset, will use same as the input image.
            input_data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format for the input image. Can be one of:
                    - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                    - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                If unset, will use the inferred format of the input image.

        Returns:
            `np.ndarray`: The padded image.

        """

        # call the general `pad` if padding on `height/width`, otherwise it's the `num_patched` dim
        if isinstance(padding, int) or len(padding) != 4:
            return pad(image, padding, mode, constant_values, data_format, input_data_format)

        if input_data_format is None:
            input_data_format = infer_channel_dimension_format(image)
        if mode == PaddingMode.CONSTANT:
            image = np.pad(image, padding, mode="constant", constant_values=constant_values)
        elif mode == PaddingMode.REFLECT:
            image = np.pad(image, padding, mode="reflect")
        elif mode == PaddingMode.REPLICATE:
            image = np.pad(image, padding, mode="edge")
        elif mode == PaddingMode.SYMMETRIC:
            image = np.pad(image, padding, mode="symmetric")
        else:
            raise ValueError(f"Invalid padding mode: {mode}")
        image = (
            to_channel_dimension_format(image, data_format, input_data_format) if data_format is not None else image
        )
        return image

    # Copied from transformers.models.llava_next.image_processing_llava_next.LlavaNextImageProcessor._resize_for_patching
    def _resize_for_patching(
        self, image: np.array, target_resolution: tuple, resample, input_data_format: ChannelDimension
    ) -> np.array:
        """
        Resizes an image to a target resolution while maintaining aspect ratio.

        Args:
            image (np.array):
                The input image.
            target_resolution (tuple):
                The target resolution (height, width) of the image.
            resample (`PILImageResampling`):
                Resampling filter to use if resizing the image.
            input_data_format (`ChannelDimension` or `str`):
                The channel dimension format of the input image.

        Returns:
            np.array: The resized and padded image.
        """
        
        new_height, new_width = _get_patch_output_size(image, target_resolution, input_data_format)
        # Resize the image
        resized_image = resize(image, (new_height, new_width), resample=resample, input_data_format=input_data_format)

        return resized_image

    # Copied from transformers.models.llava_next.image_processing_llava_next.LlavaNextImageProcessor._pad_for_patching
    def _pad_for_patching(
        self, image: np.array, target_resolution: tuple, input_data_format: ChannelDimension
    ) -> np.array:
        """
        Pad an image to a target resolution while maintaining aspect ratio.
        """
        target_height, target_width = target_resolution
        new_height, new_width = _get_patch_output_size(image, target_resolution, input_data_format)

        paste_x = (target_width - new_width) // 2
        paste_y = (target_height - new_height) // 2

        padded_image = self.pad(image, padding=((paste_y, paste_y), (paste_x, paste_x)))

        return padded_image


    def find_closest_aspect_ratio(self, aspect_ratio, target_ratios, width, height, image_size):
        """
        previous version mainly foucs on ratio.
        We also consider area ratio here.
        """
        best_factor = float('-inf')
        best_ratio = (1, 1)
        area = width * height
        for ratio in target_ratios:
            target_aspect_ratio = ratio[0] / ratio[1]
            ratio_diff = abs(aspect_ratio - target_aspect_ratio)
            area_ratio = (ratio[0]*ratio[1]*image_size*image_size)/ area
            """
            new area > 60% of original image area is enough.
            """
            factor_based_on_area_n_ratio = min((ratio[0]*ratio[1]*image_size*image_size)/ area, 0.6)* \
                                     min(target_aspect_ratio/aspect_ratio, aspect_ratio/target_aspect_ratio)
        
            if factor_based_on_area_n_ratio > best_factor:
                best_factor = factor_based_on_area_n_ratio
                best_ratio = ratio
        
        return best_ratio


    def get_image_patches(
        self,
        image: np.array,
        min_num: int,
        max_num: int,
        size: tuple,
        tile_size: int,
        use_thumbnail: bool,
        resample: PILImageResampling,
        data_format: ChannelDimension,
        input_data_format: ChannelDimension,
    ):
        image_size = get_image_size(image, channel_dim=input_data_format)
        orig_height, orig_width = image_size
        aspect_ratio = orig_width / orig_height

        # calculate the existing image aspect ratio
        target_ratios = set(
            (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
            i * j <= max_num and i * j >= min_num)
        target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

        # find the closest aspect ratio to the target
        target_aspect_ratio = self.find_closest_aspect_ratio(
            aspect_ratio, target_ratios, orig_width, orig_height, tile_size)

        # calculate the target width and height
        target_width = tile_size * target_aspect_ratio[0]
        target_height = tile_size * target_aspect_ratio[1]
        blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
        if self.pad_during_tiling:
            resized_image = self._resize_for_patching(
                image, (target_height, target_width), resample=resample, input_data_format=input_data_format
            )
            padded_image = self._pad_for_patching(resized_image, (target_height, target_width), input_data_format=input_data_format)
            image_used_to_split = padded_image
        else:
            image_used_to_split = resize(image, (target_height, target_width), resample=resample, input_data_format=input_data_format)

        processed_tiles = []
        for i in range(blocks):
            box = (
                (i % (target_width // tile_size)) * tile_size,
                (i // (target_width // tile_size)) * tile_size,
                ((i % (target_width // tile_size)) + 1) * tile_size,
                ((i // (target_width // tile_size)) + 1) * tile_size
            )
            # split the image
            split_img = crop(image_used_to_split, box[0], box[1], box[2], box[3], input_data_format)
            processed_tiles.append(split_img)
        assert len(processed_tiles) == blocks
       
        if use_thumbnail and len(processed_tiles) != 1:
            thumbnail_img = resize(image, (tile_size, tile_size), resample=resample, input_data_format=input_data_format)
            processed_tiles.append(thumbnail_img)

        # make sure that all patches are in the input data format
        processed_tiles = [
            to_channel_dimension_format(tile, channel_dim=data_format, input_channel_dim=input_data_format)
            for tile in processed_tiles
        ]
        return processed_tiles


    # Copied from transformers.models.llava_next.image_processing_llava_next.LlavaNextImageProcessor._pad_for_batching
    def _pad_for_batching(
        self,
        pixel_values: List[np.ndarray],
        data_format: Optional[Union[str, ChannelDimension]] = None,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
    ):
        """
        Pads images on the `num_of_patches` dimension with zeros to form a batch of same number of patches.

        Args:
            pixel_values (`List[np.ndarray]`):
                An array of pixel values of each images of shape (`batch_size`, `num_patches`, `image_in_3D`)
            data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format for the output image. Can be one of:
                    - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                    - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                If unset, will use same as the input image.
            input_data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format for the input image. Can be one of:
                    - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                    - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                If unset, will use the inferred format of the input image.

        Returns:
            List[`np.ndarray`]: The padded images.
        """
        max_patch = max(len(x) for x in pixel_values)
        pixel_values = [
            self.pad(
                image,
                padding=((0, max_patch - image.shape[0]), (0, 0), (0, 0), (0, 0)),
                data_format=data_format,
                input_data_format=input_data_format,
            )
            for image in pixel_values
        ]

        return pixel_values

    def _preprocess(
        self,
        images: ImageInput,
        do_resize: Optional[bool] = None,
        size: Dict[str, int] = None,
        resample: PILImageResampling = None,
        do_rescale: Optional[bool] = None,
        rescale_factor: Optional[float] = None,
        do_normalize: Optional[bool] = None,
        image_mean: Optional[Union[float, List[float]]] = None,
        image_std: Optional[Union[float, List[float]]] = None,
        do_convert_rgb: Optional[bool] = None,
        data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
    ) -> Image.Image:
        """
        Args:
            images (`ImageInput`):
                Batch of frames (one video) to preprocess. Expects a batch of frames with pixel values ranging from 0 to 255. If
                passing in images with pixel values between 0 and 1, set `do_rescale=False`.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            size (`Dict[str, int]`, *optional*, defaults to `self.size`):
                Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
                the longest edge resized to keep the input aspect ratio.
            resample (`int`, *optional*, defaults to `self.resample`):
                Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
                has an effect if `do_resize` is set to `True`.
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image.
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Rescale factor to rescale the image by if `do_rescale` is set to `True`.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image.
            image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
                Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
            image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
                Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
                `True`.
            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - Unset: Use the channel dimension format of the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        """
        if do_resize:
            assert False, 'do_resize is not supported'
            images = [
                resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
                for image in images
            ]

        if do_rescale:
            images = [
                self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
                for image in images
            ]

        if do_normalize:
            images = [
                self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
                for image in images
            ]

        images = [
            to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
        ]

        return images

    def preprocess(
        self,
        images: ImageInput,
        do_resize: Optional[bool] = None,
        size: Dict[str, int] = None,
        resample: PILImageResampling = None,
        do_rescale: Optional[bool] = None,
        rescale_factor: Optional[float] = None,
        do_normalize: Optional[bool] = None,
        image_mean: Optional[Union[float, List[float]]] = None,
        image_std: Optional[Union[float, List[float]]] = None,
        do_pad: Optional[bool] = None,
        do_convert_rgb: Optional[bool] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
    ):
        """
        Args:
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            size (`Dict[str, int]`, *optional*, defaults to `self.size`):
                Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
                the longest edge resized to keep the input aspect ratio.
            resample (`int`, *optional*, defaults to `self.resample`):
                Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
                has an effect if `do_resize` is set to `True`.
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image.
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Rescale factor to rescale the image by if `do_rescale` is set to `True`.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image.
            image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
                Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
            image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
                Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
                `True`.
            do_pad (`bool`, *optional*, defaults to `self.do_pad`):
                Whether to pad the image. If `True`, will pad the patch dimension of the images in the batch to the largest
                number of patches in the batch. Padding will be applied to the bottom and right with zeros.
            do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
                Whether to convert the image to RGB.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                - Unset: Return a list of `np.ndarray`.
                - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - Unset: Use the channel dimension format of the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.

        """
        do_resize = do_resize if do_resize is not None else self.do_resize
        size = size if size is not None else self.size
        size = get_size_dict(size, default_to_square=False)
        resample = resample if resample is not None else self.resample
        do_rescale = do_rescale if do_rescale is not None else self.do_rescale
        rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
        do_normalize = do_normalize if do_normalize is not None else self.do_normalize
        image_mean = image_mean if image_mean is not None else self.image_mean
        image_std = image_std if image_std is not None else self.image_std
        do_pad = do_pad if do_pad is not None else self.do_pad
        do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb

        images = make_flat_list_of_images(images)

        if not valid_images(images):
            raise ValueError(
                "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
                "torch.Tensor, tf.Tensor or jax.ndarray."
            )

        validate_preprocess_arguments(
            do_rescale=do_rescale,
            rescale_factor=rescale_factor,
            do_normalize=do_normalize,
            image_mean=image_mean,
            image_std=image_std,
            do_resize=do_resize,
            size=size,
            resample=resample,
        )

        if do_convert_rgb:
            images = [convert_to_rgb(image) for image in images]

        # All transformations expect numpy arrays.
        images = [to_numpy_array(image) for image in images]

        if do_rescale and is_scaled_image(images[0]):
            logger.warning_once(
                "It looks like you are trying to rescale already rescaled images. If the input"
                " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
            )

        if input_data_format is None:
            # We assume that all images have the same channel dimension format.
            input_data_format = infer_channel_dimension_format(images[0])

        processed_images = []
        image_sizes = [get_image_size(image, channel_dim=input_data_format) for image in images]
        for image in images:
            # convert image into a list of patches
            # we intentially use the same data format as the input data format
            size_tuple = (
                (size["height"], size["width"])
                if "height" in size and "width" in size
                else (size["shortest_edge"], size["shortest_edge"])
            )
            image_patches = self.get_image_patches(
                image,
                min_num=self.min_dynamic_tiles,
                max_num=self.max_dynamic_tiles,
                size=size_tuple,
                tile_size=size["height"],
                resample=resample,
                data_format=input_data_format,
                input_data_format=input_data_format,
                use_thumbnail=self.use_thumbnail,
            )

            # preprocess patches
            pixel_values = self._preprocess(
                image_patches,
                do_resize=do_resize,
                size=size_tuple,
                resample=resample,
                do_rescale=do_rescale,
                rescale_factor=rescale_factor,
                do_normalize=do_normalize,
                image_mean=image_mean,
                image_std=image_std,
                data_format=data_format,
                input_data_format=input_data_format,
            )
            pixel_values = np.array(pixel_values)
            processed_images.append(pixel_values)

        if do_pad:
            processed_images = self._pad_for_batching(processed_images)

        return BatchFeature(
            data={"pixel_values": processed_images, "image_sizes": image_sizes}, tensor_type=return_tensors
        )


__all__ = ["Eagle2ImageProcessor"]