bm_train1-8_eval21-25_lr1e-5
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.3269
- Accuracy: 0.546
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 7658372
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0 | 0 | 2.6414 | 0.0 |
2.6425 | 0.0064 | 100 | 2.6413 | 0.0 |
2.6424 | 0.0128 | 200 | 2.6410 | 0.0 |
2.6407 | 0.0192 | 300 | 2.6405 | 0.0 |
2.6374 | 0.0256 | 400 | 2.6398 | 0.0 |
2.6367 | 0.032 | 500 | 2.6389 | 0.0 |
2.6372 | 0.0384 | 600 | 2.6379 | 0.0 |
2.6372 | 0.0448 | 700 | 2.6366 | 0.0 |
2.634 | 0.0512 | 800 | 2.6350 | 0.0 |
2.6349 | 0.0576 | 900 | 2.6330 | 0.0 |
2.6337 | 0.064 | 1000 | 2.6308 | 0.0 |
2.6276 | 0.0704 | 1100 | 2.6284 | 0.0 |
2.6237 | 0.0768 | 1200 | 2.6256 | 0.0 |
2.6237 | 0.0832 | 1300 | 2.6227 | 0.0 |
2.6234 | 0.0896 | 1400 | 2.6195 | 0.0 |
2.6157 | 0.096 | 1500 | 2.6160 | 0.0 |
2.6118 | 0.1024 | 1600 | 2.6123 | 0.0 |
2.6095 | 0.1088 | 1700 | 2.6085 | 0.0 |
2.6063 | 0.1152 | 1800 | 2.6047 | 0.0 |
2.6017 | 0.1216 | 1900 | 2.6009 | 0.546 |
2.5971 | 0.128 | 2000 | 2.5971 | 0.546 |
2.5954 | 0.1344 | 2100 | 2.5933 | 0.546 |
2.5872 | 0.1408 | 2200 | 2.5895 | 0.546 |
2.5839 | 0.1472 | 2300 | 2.5857 | 0.546 |
2.5847 | 0.1536 | 2400 | 2.5819 | 0.546 |
2.5778 | 0.16 | 2500 | 2.5781 | 0.546 |
2.5714 | 0.1664 | 2600 | 2.5742 | 0.546 |
2.5699 | 0.1728 | 2700 | 2.5704 | 0.546 |
2.565 | 0.1792 | 2800 | 2.5666 | 0.546 |
2.5638 | 0.1856 | 2900 | 2.5628 | 0.546 |
2.5592 | 0.192 | 3000 | 2.5589 | 0.546 |
2.5564 | 0.1984 | 3100 | 2.5551 | 0.546 |
2.5486 | 0.2048 | 3200 | 2.5513 | 0.546 |
2.5454 | 0.2112 | 3300 | 2.5475 | 0.546 |
2.5448 | 0.2176 | 3400 | 2.5437 | 0.546 |
2.541 | 0.224 | 3500 | 2.5399 | 0.546 |
2.5337 | 0.2304 | 3600 | 2.5361 | 0.546 |
2.5337 | 0.2368 | 3700 | 2.5324 | 0.546 |
2.5278 | 0.2432 | 3800 | 2.5286 | 0.546 |
2.5233 | 0.2496 | 3900 | 2.5249 | 0.546 |
2.5214 | 0.256 | 4000 | 2.5212 | 0.546 |
2.5166 | 0.2624 | 4100 | 2.5175 | 0.546 |
2.5189 | 0.2688 | 4200 | 2.5138 | 0.546 |
2.5098 | 0.2752 | 4300 | 2.5101 | 0.546 |
2.507 | 0.2816 | 4400 | 2.5065 | 0.546 |
2.5015 | 0.288 | 4500 | 2.5028 | 0.546 |
2.4993 | 0.2944 | 4600 | 2.4992 | 0.546 |
2.4946 | 0.3008 | 4700 | 2.4957 | 0.546 |
2.4905 | 0.3072 | 4800 | 2.4921 | 0.546 |
2.4897 | 0.3136 | 4900 | 2.4886 | 0.546 |
2.4873 | 0.32 | 5000 | 2.4851 | 0.546 |
2.4822 | 0.3264 | 5100 | 2.4816 | 0.546 |
2.4801 | 0.3328 | 5200 | 2.4782 | 0.546 |
2.4784 | 0.3392 | 5300 | 2.4747 | 0.546 |
2.4728 | 0.3456 | 5400 | 2.4714 | 0.546 |
2.4686 | 0.352 | 5500 | 2.4680 | 0.546 |
2.4635 | 0.3584 | 5600 | 2.4647 | 0.546 |
2.4619 | 0.3648 | 5700 | 2.4613 | 0.546 |
2.4572 | 0.3712 | 5800 | 2.4581 | 0.546 |
2.4545 | 0.3776 | 5900 | 2.4548 | 0.546 |
2.4547 | 0.384 | 6000 | 2.4516 | 0.546 |
2.4482 | 0.3904 | 6100 | 2.4484 | 0.546 |
2.4453 | 0.3968 | 6200 | 2.4453 | 0.546 |
2.4399 | 0.4032 | 6300 | 2.4422 | 0.546 |
2.4417 | 0.4096 | 6400 | 2.4391 | 0.546 |
2.4361 | 0.416 | 6500 | 2.4361 | 0.546 |
2.436 | 0.4224 | 6600 | 2.4331 | 0.546 |
2.4293 | 0.4288 | 6700 | 2.4302 | 0.546 |
2.4264 | 0.4352 | 6800 | 2.4272 | 0.546 |
2.4241 | 0.4416 | 6900 | 2.4244 | 0.546 |
2.4206 | 0.448 | 7000 | 2.4215 | 0.546 |
2.4178 | 0.4544 | 7100 | 2.4187 | 0.546 |
2.4148 | 0.4608 | 7200 | 2.4160 | 0.546 |
2.4135 | 0.4672 | 7300 | 2.4132 | 0.546 |
2.4085 | 0.4736 | 7400 | 2.4106 | 0.546 |
2.4053 | 0.48 | 7500 | 2.4079 | 0.546 |
2.4044 | 0.4864 | 7600 | 2.4053 | 0.546 |
2.4016 | 0.4928 | 7700 | 2.4028 | 0.546 |
2.4 | 0.4992 | 7800 | 2.4003 | 0.546 |
2.3987 | 0.5056 | 7900 | 2.3978 | 0.546 |
2.393 | 0.512 | 8000 | 2.3954 | 0.546 |
2.3912 | 0.5184 | 8100 | 2.3930 | 0.546 |
2.3918 | 0.5248 | 8200 | 2.3907 | 0.546 |
2.3884 | 0.5312 | 8300 | 2.3884 | 0.546 |
2.3876 | 0.5376 | 8400 | 2.3861 | 0.546 |
2.3825 | 0.544 | 8500 | 2.3839 | 0.546 |
2.3833 | 0.5504 | 8600 | 2.3818 | 0.546 |
2.3817 | 0.5568 | 8700 | 2.3797 | 0.546 |
2.3791 | 0.5632 | 8800 | 2.3776 | 0.546 |
2.3759 | 0.5696 | 8900 | 2.3756 | 0.546 |
2.3751 | 0.576 | 9000 | 2.3737 | 0.546 |
2.3723 | 0.5824 | 9100 | 2.3717 | 0.546 |
2.3731 | 0.5888 | 9200 | 2.3699 | 0.546 |
2.3674 | 0.5952 | 9300 | 2.3680 | 0.546 |
2.3659 | 0.6016 | 9400 | 2.3663 | 0.546 |
2.3633 | 0.608 | 9500 | 2.3645 | 0.546 |
2.3637 | 0.6144 | 9600 | 2.3628 | 0.546 |
2.3594 | 0.6208 | 9700 | 2.3612 | 0.546 |
2.3637 | 0.6272 | 9800 | 2.3596 | 0.546 |
2.3574 | 0.6336 | 9900 | 2.3580 | 0.546 |
2.3595 | 0.64 | 10000 | 2.3565 | 0.546 |
2.355 | 0.6464 | 10100 | 2.3551 | 0.546 |
2.3515 | 0.6528 | 10200 | 2.3536 | 0.546 |
2.3514 | 0.6592 | 10300 | 2.3523 | 0.546 |
2.353 | 0.6656 | 10400 | 2.3509 | 0.546 |
2.3487 | 0.672 | 10500 | 2.3496 | 0.546 |
2.349 | 0.6784 | 10600 | 2.3484 | 0.546 |
2.3463 | 0.6848 | 10700 | 2.3472 | 0.546 |
2.3448 | 0.6912 | 10800 | 2.3460 | 0.546 |
2.3506 | 0.6976 | 10900 | 2.3449 | 0.546 |
2.3423 | 0.704 | 11000 | 2.3438 | 0.546 |
2.3467 | 0.7104 | 11100 | 2.3428 | 0.546 |
2.3415 | 0.7168 | 11200 | 2.3418 | 0.546 |
2.3402 | 0.7232 | 11300 | 2.3408 | 0.546 |
2.3381 | 0.7296 | 11400 | 2.3399 | 0.546 |
2.3393 | 0.736 | 11500 | 2.3390 | 0.546 |
2.337 | 0.7424 | 11600 | 2.3382 | 0.546 |
2.3365 | 0.7488 | 11700 | 2.3374 | 0.546 |
2.3366 | 0.7552 | 11800 | 2.3366 | 0.546 |
2.3374 | 0.7616 | 11900 | 2.3359 | 0.546 |
2.3376 | 0.768 | 12000 | 2.3352 | 0.546 |
2.3303 | 0.7744 | 12100 | 2.3346 | 0.546 |
2.3336 | 0.7808 | 12200 | 2.3339 | 0.546 |
2.3345 | 0.7872 | 12300 | 2.3333 | 0.546 |
2.3331 | 0.7936 | 12400 | 2.3328 | 0.546 |
2.331 | 0.8 | 12500 | 2.3323 | 0.546 |
2.3305 | 0.8064 | 12600 | 2.3318 | 0.546 |
2.3301 | 0.8128 | 12700 | 2.3313 | 0.546 |
2.3338 | 0.8192 | 12800 | 2.3309 | 0.546 |
2.3313 | 0.8256 | 12900 | 2.3305 | 0.546 |
2.3304 | 0.832 | 13000 | 2.3301 | 0.546 |
2.33 | 0.8384 | 13100 | 2.3297 | 0.546 |
2.3282 | 0.8448 | 13200 | 2.3294 | 0.546 |
2.3291 | 0.8512 | 13300 | 2.3291 | 0.546 |
2.3282 | 0.8576 | 13400 | 2.3288 | 0.546 |
2.3295 | 0.864 | 13500 | 2.3286 | 0.546 |
2.3316 | 0.8704 | 13600 | 2.3284 | 0.546 |
2.3275 | 0.8768 | 13700 | 2.3281 | 0.546 |
2.3297 | 0.8832 | 13800 | 2.3280 | 0.546 |
2.329 | 0.8896 | 13900 | 2.3278 | 0.546 |
2.3297 | 0.896 | 14000 | 2.3276 | 0.546 |
2.3284 | 0.9024 | 14100 | 2.3275 | 0.546 |
2.3289 | 0.9088 | 14200 | 2.3274 | 0.546 |
2.3285 | 0.9152 | 14300 | 2.3273 | 0.546 |
2.3251 | 0.9216 | 14400 | 2.3272 | 0.546 |
2.3274 | 0.928 | 14500 | 2.3271 | 0.546 |
2.3273 | 0.9344 | 14600 | 2.3271 | 0.546 |
2.3279 | 0.9408 | 14700 | 2.3270 | 0.546 |
2.3251 | 0.9472 | 14800 | 2.3270 | 0.546 |
2.3248 | 0.9536 | 14900 | 2.3269 | 0.546 |
2.3239 | 0.96 | 15000 | 2.3269 | 0.546 |
2.3302 | 0.9664 | 15100 | 2.3269 | 0.546 |
2.3265 | 0.9728 | 15200 | 2.3269 | 0.546 |
2.3238 | 0.9792 | 15300 | 2.3269 | 0.546 |
2.3274 | 0.9856 | 15400 | 2.3269 | 0.546 |
2.3238 | 0.992 | 15500 | 2.3269 | 0.546 |
2.325 | 0.9984 | 15600 | 2.3269 | 0.546 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support