bm_train1-20_eval1-10_lr1e-5
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.2135
- Accuracy: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 7658372
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0 | 0 | 2.6495 | 0.0 |
2.6479 | 0.0064 | 100 | 2.6479 | 0.0 |
2.6421 | 0.0128 | 200 | 2.6431 | 0.0 |
2.6384 | 0.0192 | 300 | 2.6352 | 0.0 |
2.6282 | 0.0256 | 400 | 2.6242 | 0.0 |
2.6119 | 0.032 | 500 | 2.6102 | 0.0 |
2.5919 | 0.0384 | 600 | 2.5935 | 0.0 |
2.5725 | 0.0448 | 700 | 2.5740 | 0.513 |
2.5526 | 0.0512 | 800 | 2.5515 | 0.513 |
2.5376 | 0.0576 | 900 | 2.5251 | 0.513 |
2.499 | 0.064 | 1000 | 2.4955 | 0.513 |
2.469 | 0.0704 | 1100 | 2.4648 | 0.513 |
2.4361 | 0.0768 | 1200 | 2.4366 | 0.79 |
2.4107 | 0.0832 | 1300 | 2.4097 | 0.913 |
2.3839 | 0.0896 | 1400 | 2.3842 | 0.927 |
2.3616 | 0.096 | 1500 | 2.3602 | 0.952 |
2.3384 | 0.1024 | 1600 | 2.3382 | 0.969 |
2.3158 | 0.1088 | 1700 | 2.3178 | 0.969 |
2.2998 | 0.1152 | 1800 | 2.2984 | 0.969 |
2.2777 | 0.1216 | 1900 | 2.2798 | 0.969 |
2.2588 | 0.128 | 2000 | 2.2616 | 0.969 |
2.2443 | 0.1344 | 2100 | 2.2437 | 0.969 |
2.2233 | 0.1408 | 2200 | 2.2261 | 0.969 |
2.2066 | 0.1472 | 2300 | 2.2085 | 0.969 |
2.1887 | 0.1536 | 2400 | 2.1910 | 0.969 |
2.1735 | 0.16 | 2500 | 2.1739 | 0.969 |
2.1552 | 0.1664 | 2600 | 2.1568 | 0.969 |
2.1365 | 0.1728 | 2700 | 2.1399 | 0.969 |
2.1206 | 0.1792 | 2800 | 2.1231 | 1.0 |
2.1045 | 0.1856 | 2900 | 2.1066 | 1.0 |
2.0901 | 0.192 | 3000 | 2.0901 | 1.0 |
2.0729 | 0.1984 | 3100 | 2.0737 | 1.0 |
2.0553 | 0.2048 | 3200 | 2.0578 | 1.0 |
2.041 | 0.2112 | 3300 | 2.0418 | 1.0 |
2.0238 | 0.2176 | 3400 | 2.0257 | 1.0 |
2.0101 | 0.224 | 3500 | 2.0100 | 1.0 |
1.9927 | 0.2304 | 3600 | 1.9944 | 1.0 |
1.9778 | 0.2368 | 3700 | 1.9786 | 1.0 |
1.9617 | 0.2432 | 3800 | 1.9631 | 1.0 |
1.9459 | 0.2496 | 3900 | 1.9477 | 1.0 |
1.9322 | 0.256 | 4000 | 1.9323 | 1.0 |
1.9163 | 0.2624 | 4100 | 1.9172 | 1.0 |
1.9009 | 0.2688 | 4200 | 1.9022 | 1.0 |
1.8864 | 0.2752 | 4300 | 1.8872 | 1.0 |
1.8724 | 0.2816 | 4400 | 1.8723 | 1.0 |
1.8548 | 0.288 | 4500 | 1.8577 | 1.0 |
1.8446 | 0.2944 | 4600 | 1.8432 | 1.0 |
1.8281 | 0.3008 | 4700 | 1.8288 | 1.0 |
1.8127 | 0.3072 | 4800 | 1.8145 | 1.0 |
1.7987 | 0.3136 | 4900 | 1.8004 | 1.0 |
1.7909 | 0.32 | 5000 | 1.7866 | 1.0 |
1.7763 | 0.3264 | 5100 | 1.7729 | 1.0 |
1.7572 | 0.3328 | 5200 | 1.7589 | 1.0 |
1.7416 | 0.3392 | 5300 | 1.7454 | 1.0 |
1.7331 | 0.3456 | 5400 | 1.7320 | 1.0 |
1.7226 | 0.352 | 5500 | 1.7190 | 1.0 |
1.7034 | 0.3584 | 5600 | 1.7058 | 1.0 |
1.6975 | 0.3648 | 5700 | 1.6931 | 1.0 |
1.6749 | 0.3712 | 5800 | 1.6803 | 1.0 |
1.6646 | 0.3776 | 5900 | 1.6679 | 1.0 |
1.6485 | 0.384 | 6000 | 1.6554 | 1.0 |
1.6433 | 0.3904 | 6100 | 1.6432 | 1.0 |
1.6327 | 0.3968 | 6200 | 1.6312 | 1.0 |
1.6229 | 0.4032 | 6300 | 1.6194 | 1.0 |
1.6042 | 0.4096 | 6400 | 1.6078 | 1.0 |
1.5894 | 0.416 | 6500 | 1.5964 | 1.0 |
1.582 | 0.4224 | 6600 | 1.5850 | 1.0 |
1.5718 | 0.4288 | 6700 | 1.5741 | 1.0 |
1.5648 | 0.4352 | 6800 | 1.5631 | 1.0 |
1.5521 | 0.4416 | 6900 | 1.5524 | 1.0 |
1.5416 | 0.448 | 7000 | 1.5417 | 1.0 |
1.5358 | 0.4544 | 7100 | 1.5314 | 1.0 |
1.5278 | 0.4608 | 7200 | 1.5214 | 1.0 |
1.5157 | 0.4672 | 7300 | 1.5114 | 1.0 |
1.5037 | 0.4736 | 7400 | 1.5015 | 1.0 |
1.4894 | 0.48 | 7500 | 1.4919 | 1.0 |
1.4791 | 0.4864 | 7600 | 1.4825 | 1.0 |
1.4707 | 0.4928 | 7700 | 1.4733 | 1.0 |
1.4625 | 0.4992 | 7800 | 1.4642 | 1.0 |
1.4544 | 0.5056 | 7900 | 1.4555 | 1.0 |
1.4508 | 0.512 | 8000 | 1.4467 | 1.0 |
1.4406 | 0.5184 | 8100 | 1.4383 | 1.0 |
1.4333 | 0.5248 | 8200 | 1.4299 | 1.0 |
1.4149 | 0.5312 | 8300 | 1.4219 | 1.0 |
1.4138 | 0.5376 | 8400 | 1.4140 | 1.0 |
1.4069 | 0.544 | 8500 | 1.4062 | 1.0 |
1.4003 | 0.5504 | 8600 | 1.3986 | 1.0 |
1.3966 | 0.5568 | 8700 | 1.3912 | 1.0 |
1.393 | 0.5632 | 8800 | 1.3841 | 1.0 |
1.3861 | 0.5696 | 8900 | 1.3771 | 1.0 |
1.3784 | 0.576 | 9000 | 1.3702 | 1.0 |
1.3682 | 0.5824 | 9100 | 1.3636 | 1.0 |
1.3617 | 0.5888 | 9200 | 1.3572 | 1.0 |
1.3564 | 0.5952 | 9300 | 1.3509 | 1.0 |
1.3485 | 0.6016 | 9400 | 1.3449 | 1.0 |
1.3416 | 0.608 | 9500 | 1.3388 | 1.0 |
1.3367 | 0.6144 | 9600 | 1.3331 | 1.0 |
1.3254 | 0.6208 | 9700 | 1.3274 | 1.0 |
1.321 | 0.6272 | 9800 | 1.3220 | 1.0 |
1.3157 | 0.6336 | 9900 | 1.3167 | 1.0 |
1.3213 | 0.64 | 10000 | 1.3116 | 1.0 |
1.3135 | 0.6464 | 10100 | 1.3066 | 1.0 |
1.3018 | 0.6528 | 10200 | 1.3019 | 1.0 |
1.2952 | 0.6592 | 10300 | 1.2973 | 1.0 |
1.2937 | 0.6656 | 10400 | 1.2927 | 1.0 |
1.2904 | 0.672 | 10500 | 1.2885 | 1.0 |
1.2913 | 0.6784 | 10600 | 1.2844 | 1.0 |
1.2843 | 0.6848 | 10700 | 1.2803 | 1.0 |
1.2744 | 0.6912 | 10800 | 1.2764 | 1.0 |
1.2868 | 0.6976 | 10900 | 1.2726 | 1.0 |
1.2659 | 0.704 | 11000 | 1.2691 | 1.0 |
1.2707 | 0.7104 | 11100 | 1.2656 | 1.0 |
1.2695 | 0.7168 | 11200 | 1.2624 | 1.0 |
1.2561 | 0.7232 | 11300 | 1.2592 | 1.0 |
1.2593 | 0.7296 | 11400 | 1.2562 | 1.0 |
1.2594 | 0.736 | 11500 | 1.2533 | 1.0 |
1.2474 | 0.7424 | 11600 | 1.2504 | 1.0 |
1.2571 | 0.7488 | 11700 | 1.2478 | 1.0 |
1.2494 | 0.7552 | 11800 | 1.2454 | 1.0 |
1.2419 | 0.7616 | 11900 | 1.2430 | 1.0 |
1.2396 | 0.768 | 12000 | 1.2406 | 1.0 |
1.2427 | 0.7744 | 12100 | 1.2385 | 1.0 |
1.2491 | 0.7808 | 12200 | 1.2365 | 1.0 |
1.2334 | 0.7872 | 12300 | 1.2346 | 1.0 |
1.2391 | 0.7936 | 12400 | 1.2327 | 1.0 |
1.2363 | 0.8 | 12500 | 1.2310 | 1.0 |
1.2294 | 0.8064 | 12600 | 1.2294 | 1.0 |
1.2311 | 0.8128 | 12700 | 1.2279 | 1.0 |
1.2159 | 0.8192 | 12800 | 1.2265 | 1.0 |
1.2294 | 0.8256 | 12900 | 1.2252 | 1.0 |
1.2271 | 0.832 | 13000 | 1.2240 | 1.0 |
1.227 | 0.8384 | 13100 | 1.2228 | 1.0 |
1.2281 | 0.8448 | 13200 | 1.2217 | 1.0 |
1.2197 | 0.8512 | 13300 | 1.2208 | 1.0 |
1.2209 | 0.8576 | 13400 | 1.2199 | 1.0 |
1.2222 | 0.864 | 13500 | 1.2191 | 1.0 |
1.2141 | 0.8704 | 13600 | 1.2183 | 1.0 |
1.2112 | 0.8768 | 13700 | 1.2176 | 1.0 |
1.2116 | 0.8832 | 13800 | 1.2170 | 1.0 |
1.2239 | 0.8896 | 13900 | 1.2165 | 1.0 |
1.2277 | 0.896 | 14000 | 1.2160 | 1.0 |
1.2241 | 0.9024 | 14100 | 1.2155 | 1.0 |
1.2184 | 0.9088 | 14200 | 1.2151 | 1.0 |
1.2255 | 0.9152 | 14300 | 1.2148 | 1.0 |
1.2156 | 0.9216 | 14400 | 1.2145 | 1.0 |
1.2164 | 0.928 | 14500 | 1.2143 | 1.0 |
1.2194 | 0.9344 | 14600 | 1.2141 | 1.0 |
1.215 | 0.9408 | 14700 | 1.2139 | 1.0 |
1.2116 | 0.9472 | 14800 | 1.2138 | 1.0 |
1.2212 | 0.9536 | 14900 | 1.2137 | 1.0 |
1.219 | 0.96 | 15000 | 1.2136 | 1.0 |
1.2124 | 0.9664 | 15100 | 1.2136 | 1.0 |
1.2231 | 0.9728 | 15200 | 1.2135 | 1.0 |
1.2146 | 0.9792 | 15300 | 1.2135 | 1.0 |
1.2156 | 0.9856 | 15400 | 1.2135 | 1.0 |
1.2252 | 0.992 | 15500 | 1.2135 | 1.0 |
1.2328 | 0.9984 | 15600 | 1.2135 | 1.0 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support