|
import math |
|
from copy import deepcopy |
|
from typing import Union, Tuple, Sequence, Optional, List |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from transformers.activations import PytorchGELUTanh |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import is_flash_attn_2_available |
|
|
|
from .configuration_moonvit import MoonViTConfig |
|
|
|
if is_flash_attn_2_available(): |
|
from flash_attn import flash_attn_varlen_func |
|
else: |
|
flash_attn_varlen_func = None |
|
|
|
|
|
def multihead_attention( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
q_cu_seqlens: Optional[torch.Tensor] = None, |
|
k_cu_seqlens: Optional[torch.Tensor] = None, |
|
): |
|
"""Multi-head attention using flash attention 2. |
|
|
|
Args: |
|
q, k, v: tensor of shape (batch_size, seqlen, num_heads, head_dim), |
|
or (tot_seqlens, num_heads, head_dim) if packing. |
|
q_cu_seqlens (torch.Tensor): cumulative sequence lengths of q. |
|
The first element should be 0 and the last element should be q.shape[0]. |
|
k_cu_seqlens (torch.Tensor): cumulative sequence lengths of k. |
|
The first element should be 0 and the last element should be k.shape[0]. |
|
|
|
Returns: |
|
output: shape (batch_size, seqlen, dim) or (tot_seqlens, dim) if packing, |
|
where dim = num_heads * head_dim |
|
""" |
|
|
|
assert q.dim() == k.dim() == v.dim() == 3, "q, k, v must have 3 dims" |
|
assert q_cu_seqlens[-1] == q.shape[0], "q_cu_seqlens must sum to q.shape[0]" |
|
assert ( |
|
k_cu_seqlens[-1] == k.shape[0] == v.shape[0] |
|
), "k_cu_seqlens must sum to k.shape[0]" |
|
assert q.dtype in [ |
|
torch.bfloat16, |
|
torch.float16, |
|
], f"unsupported dtype {q.dtype} for multihead attn" |
|
|
|
max_seqlen_q = (q_cu_seqlens[1:] - q_cu_seqlens[:-1]).max().item() |
|
max_seqlen_k = (k_cu_seqlens[1:] - k_cu_seqlens[:-1]).max().item() |
|
attn_out = flash_attn_varlen_func( |
|
q, |
|
k, |
|
v, |
|
q_cu_seqlens, |
|
k_cu_seqlens, |
|
max_seqlen_q, |
|
max_seqlen_k, |
|
causal=False, |
|
) |
|
attn_out = attn_out.flatten(start_dim=-2) |
|
|
|
return attn_out |
|
|
|
|
|
def sdpa_attention( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
q_cu_seqlens: Optional[torch.Tensor] = None, |
|
k_cu_seqlens: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
"""SDPA attention. |
|
|
|
Args: |
|
q, k, v: tensor of shape (batch_size, seqlen, num_heads, head_dim), |
|
or (tot_seqlens, num_heads, head_dim) if packing. |
|
""" |
|
seq_length = q.shape[0] |
|
attention_mask = torch.zeros( |
|
[1, seq_length, seq_length], device=q.device, dtype=torch.bool |
|
) |
|
for i in range(1, len(q_cu_seqlens)): |
|
attention_mask[ |
|
..., |
|
q_cu_seqlens[i - 1] : q_cu_seqlens[i], |
|
q_cu_seqlens[i - 1] : q_cu_seqlens[i], |
|
] = True |
|
q = q.transpose(0, 1) |
|
k = k.transpose(0, 1) |
|
v = v.transpose(0, 1) |
|
attn_output = F.scaled_dot_product_attention(q, k, v, attention_mask, dropout_p=0.0) |
|
attn_output = attn_output.transpose(0, 1) |
|
attn_output = attn_output.reshape(seq_length, -1) |
|
return attn_output |
|
|
|
|
|
def eager_attention( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
q_cu_seqlens: Optional[torch.Tensor] = None, |
|
k_cu_seqlens: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
seq_length = q.shape[0] |
|
attention_mask = torch.zeros( |
|
[1, seq_length, seq_length], device=q.device, dtype=torch.bool |
|
) |
|
for i in range(1, len(q_cu_seqlens)): |
|
attention_mask[ |
|
..., |
|
q_cu_seqlens[i - 1] : q_cu_seqlens[i], |
|
q_cu_seqlens[i - 1] : q_cu_seqlens[i], |
|
] = True |
|
q = q.transpose(0, 1) |
|
k = k.transpose(0, 1) |
|
v = v.transpose(0, 1) |
|
|
|
attn_weight = q @ k.transpose(-2, -1) / math.sqrt(q.shape[-1]) |
|
attn_weight += attention_mask |
|
attn_weight = torch.softmax(attn_weight, dim=-1, dtype=torch.float32).to(q.dtype) |
|
|
|
attn_output = attn_weight @ v |
|
attn_output = attn_output.transpose(0, 1) |
|
attn_output = attn_output.reshape(seq_length, -1) |
|
return attn_output |
|
|
|
|
|
VL_VISION_ATTENTION_FUNCTIONS = { |
|
"flash_attention_2": multihead_attention, |
|
"sdpa": sdpa_attention, |
|
"eager": eager_attention, |
|
} |
|
|
|
|
|
def _apply_rope_input_validation(x, freqs_cis): |
|
assert x.ndim == freqs_cis.ndim + 1, (x.shape, freqs_cis.shape) |
|
assert x.shape[:-2] == freqs_cis.shape[:-1], (x.shape, freqs_cis.shape) |
|
assert x.shape[-1] == 2 * freqs_cis.shape[-1], (x.shape, freqs_cis.shape) |
|
assert freqs_cis.dtype == torch.complex64, freqs_cis.dtype |
|
|
|
|
|
def apply_rope( |
|
xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor |
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Args: (The leading dimensions of all inputs should be the same) |
|
xq: query, tensor of shape (..., num_heads, head_dim) |
|
xk: key, tensor of shape (..., num_heads, head_dim) |
|
freqs_cis: tensor of shape (..., head_dim/2), dtype=torch.complex64. It contains the precomputed cis(freqs) for each position in the 2D grid. |
|
Returns: |
|
xq_out, xk_out: tensors of shape (..., num_heads, head_dim) |
|
""" |
|
_apply_rope_input_validation(xq, freqs_cis) |
|
_apply_rope_input_validation(xk, freqs_cis) |
|
|
|
freqs_cis = freqs_cis.unsqueeze(-2) |
|
|
|
xq_ = torch.view_as_complex(xq.float().view(*xq.shape[:-1], -1, 2)) |
|
xk_ = torch.view_as_complex(xk.float().view(*xq.shape[:-1], -1, 2)) |
|
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(-2) |
|
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(-2) |
|
return xq_out.type_as(xq), xk_out.type_as(xk) |
|
|
|
|
|
class Learnable2DInterpPosEmb(nn.Module): |
|
def __init__( |
|
self, height: int, width: int, dim: int, interpolation_mode: str = "bicubic" |
|
) -> None: |
|
super().__init__() |
|
self.height = height |
|
self.width = width |
|
self.interpolation_mode = interpolation_mode |
|
self.weight = nn.Parameter(torch.empty(height, width, dim)) |
|
self.reset_parameters() |
|
|
|
def reset_parameters(self): |
|
nn.init.normal_(self.weight) |
|
|
|
def forward(self, x: torch.Tensor, grid_hws: torch.Tensor) -> torch.Tensor: |
|
pos_embs = [] |
|
for shape in grid_hws.tolist(): |
|
if shape == self.weight.shape[:-1]: |
|
pos_embs.append(self.weight.flatten(end_dim=1)) |
|
else: |
|
pos_embs.append( |
|
F.interpolate( |
|
self.weight.permute((2, 0, 1)).unsqueeze(0), |
|
size=shape, |
|
mode=self.interpolation_mode, |
|
) |
|
.squeeze(0) |
|
.permute((1, 2, 0)) |
|
.flatten(end_dim=1) |
|
) |
|
out = x + torch.cat(pos_embs) |
|
return out |
|
|
|
|
|
class MoonVisionPatchEmbed(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
out_dim: int, |
|
in_dim: int = 3, |
|
patch_size: Union[int, Tuple[int, int]] = (14, 14), |
|
pos_emb_height: int = 14, |
|
pos_emb_width: int = 14, |
|
): |
|
super().__init__() |
|
assert isinstance( |
|
patch_size, (int, Sequence) |
|
), f"Invalid patch_size type: {type(patch_size)}" |
|
if isinstance(patch_size, int): |
|
patch_size = (patch_size, patch_size) |
|
assert ( |
|
len(patch_size) == 2 |
|
), f"Expected patch_size to be a tuple of 2, got {patch_size}" |
|
self.patch_size = patch_size |
|
|
|
self.proj = nn.Conv2d( |
|
in_dim, out_dim, kernel_size=patch_size, stride=patch_size |
|
) |
|
|
|
self.pos_emb = Learnable2DInterpPosEmb( |
|
height=pos_emb_height, width=pos_emb_width, dim=out_dim |
|
) |
|
|
|
def forward(self, x: torch.Tensor, grid_hws: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Args: |
|
x (L, Channels): input tensor |
|
grid_hws (N, 2): grid height and width |
|
|
|
Returns: |
|
(L, Cout) tensor |
|
""" |
|
x = self.proj(x).view(x.size(0), -1) |
|
|
|
x = self.pos_emb(x, grid_hws) |
|
return x |
|
|
|
|
|
class Rope2DPosEmb(nn.Module): |
|
"""2D rotary position embedding with multi-resolution support. |
|
|
|
This class is intended to be used in the following way: |
|
1. Before training, create an instance of Rope2DPosEmb. This instance will hold the precomputed cis. |
|
2. Before each forward pass, call `get_freqs_cis_by_*` to get the `freqs_cis` tensor for this iteration. |
|
3. During the forward pass, pass the `freqs_cis` tensor to each attention layer, and call `apply` just before each attention operation. |
|
The rope is shared across all attention layers and all heads. |
|
|
|
Refs: |
|
- RoFormer: https://arxiv.org/abs/2104.09864 |
|
- VisionLLaMA: https://arxiv.org/abs/2403.00522 |
|
- https://github.com/Meituan-AutoML/VisionLLaMA/blob/main/dit/models.py |
|
|
|
Args: |
|
dim (int): usually the multi-head attention dimension, should be divisible by 4 (TODO: relax this constraint if needed) |
|
max_height (int): the maximum height of the 2D grid |
|
max_width (int): the maximum width of the 2D grid |
|
theta_base (float): the base of the theta |
|
device (str): the device to store the precomputed cis |
|
""" |
|
|
|
def __init__(self, dim: int, max_height: int, max_width: int, theta_base=10000): |
|
super().__init__() |
|
self.dim = dim |
|
assert self.dim % 4 == 0, "dim must be divisible by 4" |
|
self.max_height = max_height |
|
self.max_width = max_width |
|
self.theta_base = theta_base |
|
|
|
self.freqs_cis = None |
|
|
|
def extra_repr(self): |
|
return f"dim={self.dim}, max_height={self.max_height}, max_width={self.max_width}, theta_base={self.theta_base}" |
|
|
|
def _precompute_freqs_cis(self, device: torch.device) -> torch.Tensor: |
|
"""Calculate the cis(freqs) for each position in the 2D grid. |
|
|
|
Return: complex tensor of shape (max_height, max_width, dim//2) and value: |
|
height axis: ret[h, w, 2*i] = cis(h * theta_base**(-4*i/dim)) |
|
weight axis: ret[h, w, 2*i+1] = cis(w * theta_base**(-4*i/dim)) with (i in [0, dim//4)) |
|
note: `cis` is a mathematical notation defined by cis x = cos x + i sin x, |
|
""" |
|
N = self.max_height * self.max_width |
|
flat_pos = torch.arange(0, N).float().to(device) |
|
x_pos = flat_pos % self.max_width |
|
y_pos = flat_pos // self.max_width |
|
dim_range = ( |
|
torch.arange(0, self.dim, 4)[: (self.dim // 4)].float().to(device) |
|
) |
|
freqs = 1.0 / (self.theta_base ** (dim_range / self.dim)) |
|
x_freqs = torch.outer(x_pos, freqs).float() |
|
y_freqs = torch.outer(y_pos, freqs).float() |
|
x_cis = torch.polar(torch.ones_like(x_freqs), x_freqs) |
|
y_cis = torch.polar(torch.ones_like(y_freqs), y_freqs) |
|
|
|
freqs_cis = torch.cat( |
|
[x_cis.unsqueeze(dim=-1), y_cis.unsqueeze(dim=-1)], dim=-1 |
|
) |
|
|
|
freqs_cis = freqs_cis.reshape(self.max_height, self.max_width, -1) |
|
return freqs_cis |
|
|
|
def get_freqs_cis(self, grid_hws: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Args: |
|
grid_hws (torch.Tensor): grid height and width |
|
|
|
Returns: |
|
freqs_cis: tensor of shape (sum(t * height * width), dim//2) |
|
""" |
|
if self.freqs_cis is None: |
|
self.freqs_cis = self._precompute_freqs_cis(grid_hws.device) |
|
|
|
shapes = grid_hws.tolist() |
|
assert all( |
|
1 <= h <= self.max_height and 1 <= w <= self.max_width for h, w in shapes |
|
), ( |
|
shapes, |
|
self.max_height, |
|
self.max_width, |
|
) |
|
freqs_cis = torch.cat( |
|
[self.freqs_cis[:h, :w].reshape(-1, self.dim // 2) for h, w in shapes], |
|
dim=0, |
|
) |
|
return freqs_cis |
|
|
|
|
|
class MLP2(nn.Module): |
|
""" |
|
Args: |
|
dims: [in_dim, hidden_dim, out_dim] |
|
bias: whether to use bias in linear layer. |
|
""" |
|
|
|
def __init__(self, dims: list[int], activation, bias=True): |
|
super().__init__() |
|
assert len(dims) == 3 |
|
self.fc0 = nn.Linear(dims[0], dims[1], bias=bias) |
|
self.fc1 = nn.Linear(dims[1], dims[2], bias=bias) |
|
self.activation = activation |
|
for m in [self.fc0, self.fc1]: |
|
nn.init.trunc_normal_(m.weight, std=math.sqrt(2 / m.in_features)) |
|
if m.bias is not None: |
|
nn.init.zeros_(m.bias) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.fc0(x) |
|
x = self.activation(x) |
|
return self.fc1(x) |
|
|
|
|
|
class MoonVitEncoderLayer(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
num_heads: int, |
|
hidden_dim: int, |
|
mlp_dim: int, |
|
*, |
|
attn_implementation: str = "eager", |
|
activation=F.gelu, |
|
attn_bias: bool = False, |
|
): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
self.hidden_dim = hidden_dim |
|
self.hidden_size_per_attention_head = self.hidden_dim // self.num_heads |
|
self.attn_implementation = attn_implementation |
|
|
|
self.norm0 = nn.LayerNorm(hidden_dim) |
|
self.norm1 = nn.LayerNorm(hidden_dim) |
|
self.mlp = MLP2([hidden_dim, mlp_dim, hidden_dim], activation) |
|
self.wqkv = nn.Linear(hidden_dim, hidden_dim * 3, bias=attn_bias) |
|
self.wo = nn.Linear(hidden_dim, hidden_dim, bias=attn_bias) |
|
|
|
def attention_qkvpacked( |
|
self, |
|
x: torch.Tensor, |
|
cu_seqlens: torch.Tensor, |
|
rope_freqs_cis: Optional[torch.Tensor] = None, |
|
): |
|
""" |
|
Args: |
|
x (torch.Tensor): (batch_size, seqlen, hidden_dim) |
|
cu_seqlens (torch.Tensor): |
|
""" |
|
xqkv = self.wqkv(x) |
|
|
|
qkv_shape = xqkv.size()[:-1] + ( |
|
3, |
|
self.num_heads, |
|
self.hidden_size_per_attention_head, |
|
) |
|
|
|
xqkv = xqkv.view(*qkv_shape) |
|
xq, xk, xv = torch.unbind(xqkv, dim=-3) |
|
|
|
xq, xk = apply_rope(xq, xk, rope_freqs_cis) |
|
|
|
attn_func = VL_VISION_ATTENTION_FUNCTIONS[self.attn_implementation] |
|
attn_out = attn_func( |
|
xq, xk, xv, q_cu_seqlens=cu_seqlens, k_cu_seqlens=cu_seqlens |
|
) |
|
|
|
attn_out = self.wo(attn_out) |
|
return attn_out |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
cu_seqlens: torch.Tensor, |
|
rope_freqs_cis: Union[torch.Tensor, None] = None, |
|
) -> torch.Tensor: |
|
""" |
|
Args: |
|
hidden_states: non-packed (B, N, D) or packed (L, D). if non-packed, seqlens should be None, if packed, seqlens should be set |
|
|
|
Returns: |
|
output: same shape of input, non-packed (B, N, D) for non-packed input, (L, D) for packed input |
|
""" |
|
residual = hidden_states |
|
hidden_states = self.norm0(hidden_states) |
|
attn_out = self.attention_qkvpacked( |
|
hidden_states, cu_seqlens, rope_freqs_cis=rope_freqs_cis |
|
) |
|
hidden_states = residual + attn_out |
|
|
|
residual = hidden_states |
|
hidden_states = self.mlp(self.norm1(hidden_states)) |
|
hidden_states = residual + hidden_states |
|
return hidden_states |
|
|
|
|
|
class MoonVitEncoder(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
hidden_dim: int, |
|
num_layers: int, |
|
block_cfg: dict, |
|
) -> None: |
|
super().__init__() |
|
|
|
self.rope_2d = Rope2DPosEmb( |
|
block_cfg["hidden_dim"] // block_cfg["num_heads"], 512, 512 |
|
) |
|
self.blocks = nn.ModuleList( |
|
[MoonVitEncoderLayer(**block_cfg) for _ in range(num_layers)] |
|
) |
|
self.final_layernorm = nn.LayerNorm(hidden_dim) |
|
|
|
def forward( |
|
self, hidden_states: torch.Tensor, grid_hws: torch.Tensor |
|
) -> torch.Tensor: |
|
rope_freqs_cis = self.rope_2d.get_freqs_cis(grid_hws=grid_hws) |
|
|
|
lengths = torch.cat( |
|
( |
|
torch.zeros(1, device=hidden_states.device, dtype=grid_hws.dtype), |
|
grid_hws[:, 0] * grid_hws[:, 1], |
|
) |
|
) |
|
cu_seqlens = lengths.cumsum(dim=0, dtype=torch.int32) |
|
|
|
for _, block in enumerate(self.blocks): |
|
hidden_states = block( |
|
hidden_states, cu_seqlens, rope_freqs_cis=rope_freqs_cis |
|
) |
|
|
|
hidden_states = self.final_layernorm(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
def patch_merger( |
|
x: torch.Tensor, |
|
grid_hws: torch.Tensor, |
|
merge_kernel_size: list[int, int] = (2, 2), |
|
) -> List[torch.Tensor]: |
|
d_model = x.size(-1) |
|
|
|
outputs = [] |
|
pre_sum = 0 |
|
for x_shape in grid_hws.tolist(): |
|
height, width = x_shape[0], x_shape[1] |
|
|
|
seq = x[pre_sum : pre_sum + height * width] |
|
|
|
kernel_height, kernel_width = merge_kernel_size |
|
new_height, new_width = height // kernel_height, width // kernel_width |
|
reshaped_seq = seq.view( |
|
new_height, kernel_height, new_width, kernel_width, d_model |
|
) |
|
reshaped_seq = reshaped_seq.permute(0, 2, 1, 3, 4).contiguous() |
|
padded_seq = reshaped_seq.view( |
|
new_height * new_width, kernel_height * kernel_width, -1 |
|
) |
|
outputs.append(padded_seq) |
|
pre_sum += height * width |
|
|
|
return outputs |
|
|
|
|
|
class MoonVitPretrainedModel(PreTrainedModel): |
|
config_class = MoonViTConfig |
|
model_type = "moonvit" |
|
_no_split_modules = ["PackingTransformer"] |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
|
|
def __init__(self, config: MoonViTConfig, *inputs, **kwargs): |
|
super().__init__(config, *inputs, **kwargs) |
|
config = deepcopy(config) |
|
self.merge_kernel_size = config.merge_kernel_size |
|
self.patch_size = config.patch_size |
|
self.patch_embed = MoonVisionPatchEmbed( |
|
out_dim=config.hidden_size, |
|
patch_size=config.patch_size, |
|
pos_emb_height=config.init_pos_emb_height, |
|
pos_emb_width=config.init_pos_emb_width, |
|
) |
|
|
|
self.encoder = MoonVitEncoder( |
|
hidden_dim=config.hidden_size, |
|
num_layers=config.num_hidden_layers, |
|
block_cfg={ |
|
"num_heads": config.num_attention_heads, |
|
"hidden_dim": config.hidden_size, |
|
"mlp_dim": config.intermediate_size, |
|
"activation": PytorchGELUTanh(), |
|
"attn_bias": True, |
|
"attn_implementation": config._attn_implementation, |
|
}, |
|
) |
|
|
|
def forward( |
|
self, pixel_values: torch.Tensor, grid_hws: torch.Tensor |
|
) -> torch.Tensor: |
|
""" |
|
Args: |
|
pixel_values (torch.Tensor): The input pixel values. |
|
grid_hws (torch.Tensor): The grid height and width. |
|
|
|
Returns: |
|
torch.Tensor: The output tokens. |
|
""" |
|
hidden_states = self.patch_embed(pixel_values, grid_hws) |
|
hidden_states = self.encoder(hidden_states, grid_hws) |
|
hidden_states = patch_merger( |
|
hidden_states, grid_hws, merge_kernel_size=self.merge_kernel_size |
|
) |
|
return hidden_states |
|
|