File size: 19,448 Bytes
f5378d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 |
import math
from copy import deepcopy
from typing import Union, Tuple, Sequence, Optional, List
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers.activations import PytorchGELUTanh
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import is_flash_attn_2_available
from .configuration_moonvit import MoonViTConfig
if is_flash_attn_2_available():
from flash_attn import flash_attn_varlen_func
else:
flash_attn_varlen_func = None
def multihead_attention(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
q_cu_seqlens: Optional[torch.Tensor] = None,
k_cu_seqlens: Optional[torch.Tensor] = None,
):
"""Multi-head attention using flash attention 2.
Args:
q, k, v: tensor of shape (batch_size, seqlen, num_heads, head_dim),
or (tot_seqlens, num_heads, head_dim) if packing.
q_cu_seqlens (torch.Tensor): cumulative sequence lengths of q.
The first element should be 0 and the last element should be q.shape[0].
k_cu_seqlens (torch.Tensor): cumulative sequence lengths of k.
The first element should be 0 and the last element should be k.shape[0].
Returns:
output: shape (batch_size, seqlen, dim) or (tot_seqlens, dim) if packing,
where dim = num_heads * head_dim
"""
# Unified format legal check
assert q.dim() == k.dim() == v.dim() == 3, "q, k, v must have 3 dims"
assert q_cu_seqlens[-1] == q.shape[0], "q_cu_seqlens must sum to q.shape[0]"
assert (
k_cu_seqlens[-1] == k.shape[0] == v.shape[0]
), "k_cu_seqlens must sum to k.shape[0]"
assert q.dtype in [
torch.bfloat16,
torch.float16,
], f"unsupported dtype {q.dtype} for multihead attn"
max_seqlen_q = (q_cu_seqlens[1:] - q_cu_seqlens[:-1]).max().item()
max_seqlen_k = (k_cu_seqlens[1:] - k_cu_seqlens[:-1]).max().item()
attn_out = flash_attn_varlen_func(
q,
k,
v,
q_cu_seqlens,
k_cu_seqlens,
max_seqlen_q,
max_seqlen_k,
causal=False,
)
attn_out = attn_out.flatten(start_dim=-2)
return attn_out
def sdpa_attention(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
q_cu_seqlens: Optional[torch.Tensor] = None,
k_cu_seqlens: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""SDPA attention.
Args:
q, k, v: tensor of shape (batch_size, seqlen, num_heads, head_dim),
or (tot_seqlens, num_heads, head_dim) if packing.
"""
seq_length = q.shape[0]
attention_mask = torch.zeros(
[1, seq_length, seq_length], device=q.device, dtype=torch.bool
)
for i in range(1, len(q_cu_seqlens)):
attention_mask[
...,
q_cu_seqlens[i - 1] : q_cu_seqlens[i],
q_cu_seqlens[i - 1] : q_cu_seqlens[i],
] = True
q = q.transpose(0, 1)
k = k.transpose(0, 1)
v = v.transpose(0, 1)
attn_output = F.scaled_dot_product_attention(q, k, v, attention_mask, dropout_p=0.0)
attn_output = attn_output.transpose(0, 1)
attn_output = attn_output.reshape(seq_length, -1)
return attn_output
def eager_attention(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
q_cu_seqlens: Optional[torch.Tensor] = None,
k_cu_seqlens: Optional[torch.Tensor] = None,
) -> torch.Tensor:
seq_length = q.shape[0]
attention_mask = torch.zeros(
[1, seq_length, seq_length], device=q.device, dtype=torch.bool
)
for i in range(1, len(q_cu_seqlens)):
attention_mask[
...,
q_cu_seqlens[i - 1] : q_cu_seqlens[i],
q_cu_seqlens[i - 1] : q_cu_seqlens[i],
] = True
q = q.transpose(0, 1)
k = k.transpose(0, 1)
v = v.transpose(0, 1)
attn_weight = q @ k.transpose(-2, -1) / math.sqrt(q.shape[-1])
attn_weight += attention_mask
attn_weight = torch.softmax(attn_weight, dim=-1, dtype=torch.float32).to(q.dtype)
attn_output = attn_weight @ v
attn_output = attn_output.transpose(0, 1)
attn_output = attn_output.reshape(seq_length, -1)
return attn_output
VL_VISION_ATTENTION_FUNCTIONS = {
"flash_attention_2": multihead_attention,
"sdpa": sdpa_attention,
"eager": eager_attention,
}
def _apply_rope_input_validation(x, freqs_cis):
assert x.ndim == freqs_cis.ndim + 1, (x.shape, freqs_cis.shape)
assert x.shape[:-2] == freqs_cis.shape[:-1], (x.shape, freqs_cis.shape)
assert x.shape[-1] == 2 * freqs_cis.shape[-1], (x.shape, freqs_cis.shape)
assert freqs_cis.dtype == torch.complex64, freqs_cis.dtype
def apply_rope(
xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Args: (The leading dimensions of all inputs should be the same)
xq: query, tensor of shape (..., num_heads, head_dim)
xk: key, tensor of shape (..., num_heads, head_dim)
freqs_cis: tensor of shape (..., head_dim/2), dtype=torch.complex64. It contains the precomputed cis(freqs) for each position in the 2D grid.
Returns:
xq_out, xk_out: tensors of shape (..., num_heads, head_dim)
"""
_apply_rope_input_validation(xq, freqs_cis)
_apply_rope_input_validation(xk, freqs_cis)
freqs_cis = freqs_cis.unsqueeze(-2) # ..., 1, head_dim/2
# ..., num_heads, head_dim/2
xq_ = torch.view_as_complex(xq.float().view(*xq.shape[:-1], -1, 2))
xk_ = torch.view_as_complex(xk.float().view(*xq.shape[:-1], -1, 2))
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(-2) # ..., num_heads, head_dim
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(-2) # ..., num_heads, head_dim
return xq_out.type_as(xq), xk_out.type_as(xk)
class Learnable2DInterpPosEmb(nn.Module):
def __init__(
self, height: int, width: int, dim: int, interpolation_mode: str = "bicubic"
) -> None:
super().__init__()
self.height = height
self.width = width
self.interpolation_mode = interpolation_mode
self.weight = nn.Parameter(torch.empty(height, width, dim))
self.reset_parameters()
def reset_parameters(self):
nn.init.normal_(self.weight)
def forward(self, x: torch.Tensor, grid_hws: torch.Tensor) -> torch.Tensor:
pos_embs = []
for shape in grid_hws.tolist():
if shape == self.weight.shape[:-1]:
pos_embs.append(self.weight.flatten(end_dim=1))
else:
pos_embs.append(
F.interpolate(
self.weight.permute((2, 0, 1)).unsqueeze(0),
size=shape,
mode=self.interpolation_mode,
)
.squeeze(0)
.permute((1, 2, 0))
.flatten(end_dim=1)
)
out = x + torch.cat(pos_embs)
return out
class MoonVisionPatchEmbed(nn.Module):
def __init__(
self,
out_dim: int,
in_dim: int = 3,
patch_size: Union[int, Tuple[int, int]] = (14, 14),
pos_emb_height: int = 14,
pos_emb_width: int = 14,
):
super().__init__()
assert isinstance(
patch_size, (int, Sequence)
), f"Invalid patch_size type: {type(patch_size)}"
if isinstance(patch_size, int):
patch_size = (patch_size, patch_size)
assert (
len(patch_size) == 2
), f"Expected patch_size to be a tuple of 2, got {patch_size}"
self.patch_size = patch_size
self.proj = nn.Conv2d(
in_dim, out_dim, kernel_size=patch_size, stride=patch_size
)
self.pos_emb = Learnable2DInterpPosEmb(
height=pos_emb_height, width=pos_emb_width, dim=out_dim
)
def forward(self, x: torch.Tensor, grid_hws: torch.Tensor) -> torch.Tensor:
"""
Args:
x (L, Channels): input tensor
grid_hws (N, 2): grid height and width
Returns:
(L, Cout) tensor
"""
x = self.proj(x).view(x.size(0), -1)
# apply positional embedding
x = self.pos_emb(x, grid_hws)
return x
class Rope2DPosEmb(nn.Module):
"""2D rotary position embedding with multi-resolution support.
This class is intended to be used in the following way:
1. Before training, create an instance of Rope2DPosEmb. This instance will hold the precomputed cis.
2. Before each forward pass, call `get_freqs_cis_by_*` to get the `freqs_cis` tensor for this iteration.
3. During the forward pass, pass the `freqs_cis` tensor to each attention layer, and call `apply` just before each attention operation.
The rope is shared across all attention layers and all heads.
Refs:
- RoFormer: https://arxiv.org/abs/2104.09864
- VisionLLaMA: https://arxiv.org/abs/2403.00522
- https://github.com/Meituan-AutoML/VisionLLaMA/blob/main/dit/models.py
Args:
dim (int): usually the multi-head attention dimension, should be divisible by 4 (TODO: relax this constraint if needed)
max_height (int): the maximum height of the 2D grid
max_width (int): the maximum width of the 2D grid
theta_base (float): the base of the theta
device (str): the device to store the precomputed cis
"""
def __init__(self, dim: int, max_height: int, max_width: int, theta_base=10000):
super().__init__()
self.dim = dim
assert self.dim % 4 == 0, "dim must be divisible by 4"
self.max_height = max_height
self.max_width = max_width
self.theta_base = theta_base
self.freqs_cis = None
def extra_repr(self):
return f"dim={self.dim}, max_height={self.max_height}, max_width={self.max_width}, theta_base={self.theta_base}"
def _precompute_freqs_cis(self, device: torch.device) -> torch.Tensor:
"""Calculate the cis(freqs) for each position in the 2D grid.
Return: complex tensor of shape (max_height, max_width, dim//2) and value:
height axis: ret[h, w, 2*i] = cis(h * theta_base**(-4*i/dim))
weight axis: ret[h, w, 2*i+1] = cis(w * theta_base**(-4*i/dim)) with (i in [0, dim//4))
note: `cis` is a mathematical notation defined by cis x = cos x + i sin x,
"""
N = self.max_height * self.max_width
flat_pos = torch.arange(0, N).float().to(device)
x_pos = flat_pos % self.max_width
y_pos = flat_pos // self.max_width
dim_range = (
torch.arange(0, self.dim, 4)[: (self.dim // 4)].float().to(device)
) # C/4
freqs = 1.0 / (self.theta_base ** (dim_range / self.dim))
x_freqs = torch.outer(x_pos, freqs).float() # N, C/4
y_freqs = torch.outer(y_pos, freqs).float() # N, C/4
x_cis = torch.polar(torch.ones_like(x_freqs), x_freqs) # N, C/4
y_cis = torch.polar(torch.ones_like(y_freqs), y_freqs) # N, C/4
# N, C/4, 2
freqs_cis = torch.cat(
[x_cis.unsqueeze(dim=-1), y_cis.unsqueeze(dim=-1)], dim=-1
)
# max_height, max_width, C/2
freqs_cis = freqs_cis.reshape(self.max_height, self.max_width, -1)
return freqs_cis
def get_freqs_cis(self, grid_hws: torch.Tensor) -> torch.Tensor:
"""
Args:
grid_hws (torch.Tensor): grid height and width
Returns:
freqs_cis: tensor of shape (sum(t * height * width), dim//2)
"""
if self.freqs_cis is None:
self.freqs_cis = self._precompute_freqs_cis(grid_hws.device)
shapes = grid_hws.tolist()
assert all(
1 <= h <= self.max_height and 1 <= w <= self.max_width for h, w in shapes
), (
shapes,
self.max_height,
self.max_width,
)
freqs_cis = torch.cat(
[self.freqs_cis[:h, :w].reshape(-1, self.dim // 2) for h, w in shapes],
dim=0,
)
return freqs_cis
class MLP2(nn.Module):
"""
Args:
dims: [in_dim, hidden_dim, out_dim]
bias: whether to use bias in linear layer.
"""
def __init__(self, dims: list[int], activation, bias=True):
super().__init__()
assert len(dims) == 3
self.fc0 = nn.Linear(dims[0], dims[1], bias=bias)
self.fc1 = nn.Linear(dims[1], dims[2], bias=bias)
self.activation = activation
for m in [self.fc0, self.fc1]:
nn.init.trunc_normal_(m.weight, std=math.sqrt(2 / m.in_features))
if m.bias is not None:
nn.init.zeros_(m.bias)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.fc0(x)
x = self.activation(x)
return self.fc1(x)
class MoonVitEncoderLayer(nn.Module):
def __init__(
self,
num_heads: int,
hidden_dim: int,
mlp_dim: int,
*,
attn_implementation: str = "eager",
activation=F.gelu,
attn_bias: bool = False,
):
super().__init__()
self.num_heads = num_heads
self.hidden_dim = hidden_dim
self.hidden_size_per_attention_head = self.hidden_dim // self.num_heads
self.attn_implementation = attn_implementation
self.norm0 = nn.LayerNorm(hidden_dim)
self.norm1 = nn.LayerNorm(hidden_dim)
self.mlp = MLP2([hidden_dim, mlp_dim, hidden_dim], activation)
self.wqkv = nn.Linear(hidden_dim, hidden_dim * 3, bias=attn_bias)
self.wo = nn.Linear(hidden_dim, hidden_dim, bias=attn_bias)
def attention_qkvpacked(
self,
x: torch.Tensor,
cu_seqlens: torch.Tensor,
rope_freqs_cis: Optional[torch.Tensor] = None,
):
"""
Args:
x (torch.Tensor): (batch_size, seqlen, hidden_dim)
cu_seqlens (torch.Tensor):
"""
xqkv = self.wqkv(x)
qkv_shape = xqkv.size()[:-1] + (
3,
self.num_heads,
self.hidden_size_per_attention_head,
)
# xqkv: (batch_size, seqlen, 3, nheads, headdim)
xqkv = xqkv.view(*qkv_shape)
xq, xk, xv = torch.unbind(xqkv, dim=-3)
xq, xk = apply_rope(xq, xk, rope_freqs_cis)
attn_func = VL_VISION_ATTENTION_FUNCTIONS[self.attn_implementation]
attn_out = attn_func(
xq, xk, xv, q_cu_seqlens=cu_seqlens, k_cu_seqlens=cu_seqlens
)
attn_out = self.wo(attn_out)
return attn_out
def forward(
self,
hidden_states: torch.Tensor,
cu_seqlens: torch.Tensor,
rope_freqs_cis: Union[torch.Tensor, None] = None,
) -> torch.Tensor:
"""
Args:
hidden_states: non-packed (B, N, D) or packed (L, D). if non-packed, seqlens should be None, if packed, seqlens should be set
Returns:
output: same shape of input, non-packed (B, N, D) for non-packed input, (L, D) for packed input
"""
residual = hidden_states
hidden_states = self.norm0(hidden_states)
attn_out = self.attention_qkvpacked(
hidden_states, cu_seqlens, rope_freqs_cis=rope_freqs_cis
)
hidden_states = residual + attn_out
residual = hidden_states
hidden_states = self.mlp(self.norm1(hidden_states))
hidden_states = residual + hidden_states
return hidden_states
class MoonVitEncoder(nn.Module):
def __init__(
self,
hidden_dim: int,
num_layers: int,
block_cfg: dict,
) -> None:
super().__init__()
self.rope_2d = Rope2DPosEmb(
block_cfg["hidden_dim"] // block_cfg["num_heads"], 512, 512
)
self.blocks = nn.ModuleList(
[MoonVitEncoderLayer(**block_cfg) for _ in range(num_layers)]
)
self.final_layernorm = nn.LayerNorm(hidden_dim)
def forward(
self, hidden_states: torch.Tensor, grid_hws: torch.Tensor
) -> torch.Tensor:
rope_freqs_cis = self.rope_2d.get_freqs_cis(grid_hws=grid_hws)
lengths = torch.cat(
(
torch.zeros(1, device=hidden_states.device, dtype=grid_hws.dtype),
grid_hws[:, 0] * grid_hws[:, 1],
)
)
cu_seqlens = lengths.cumsum(dim=0, dtype=torch.int32)
for _, block in enumerate(self.blocks):
hidden_states = block(
hidden_states, cu_seqlens, rope_freqs_cis=rope_freqs_cis
)
hidden_states = self.final_layernorm(hidden_states)
return hidden_states
def patch_merger(
x: torch.Tensor,
grid_hws: torch.Tensor,
merge_kernel_size: list[int, int] = (2, 2),
) -> List[torch.Tensor]:
d_model = x.size(-1)
outputs = []
pre_sum = 0
for x_shape in grid_hws.tolist():
height, width = x_shape[0], x_shape[1]
# Get the current sequence
seq = x[pre_sum : pre_sum + height * width]
# Reshape along self.merge_kernel_size and concat to the last dimension
kernel_height, kernel_width = merge_kernel_size
new_height, new_width = height // kernel_height, width // kernel_width
reshaped_seq = seq.view(
new_height, kernel_height, new_width, kernel_width, d_model
)
reshaped_seq = reshaped_seq.permute(0, 2, 1, 3, 4).contiguous()
padded_seq = reshaped_seq.view(
new_height * new_width, kernel_height * kernel_width, -1
)
outputs.append(padded_seq)
pre_sum += height * width
return outputs
class MoonVitPretrainedModel(PreTrainedModel):
config_class = MoonViTConfig
model_type = "moonvit"
_no_split_modules = ["PackingTransformer"]
_supports_flash_attn_2 = True
_supports_sdpa = True
def __init__(self, config: MoonViTConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
config = deepcopy(config)
self.merge_kernel_size = config.merge_kernel_size
self.patch_size = config.patch_size
self.patch_embed = MoonVisionPatchEmbed(
out_dim=config.hidden_size,
patch_size=config.patch_size,
pos_emb_height=config.init_pos_emb_height,
pos_emb_width=config.init_pos_emb_width,
)
self.encoder = MoonVitEncoder(
hidden_dim=config.hidden_size,
num_layers=config.num_hidden_layers,
block_cfg={
"num_heads": config.num_attention_heads,
"hidden_dim": config.hidden_size,
"mlp_dim": config.intermediate_size,
"activation": PytorchGELUTanh(),
"attn_bias": True,
"attn_implementation": config._attn_implementation,
},
)
def forward(
self, pixel_values: torch.Tensor, grid_hws: torch.Tensor
) -> torch.Tensor:
"""
Args:
pixel_values (torch.Tensor): The input pixel values.
grid_hws (torch.Tensor): The grid height and width.
Returns:
torch.Tensor: The output tokens.
"""
hidden_states = self.patch_embed(pixel_values, grid_hws)
hidden_states = self.encoder(hidden_states, grid_hws)
hidden_states = patch_merger(
hidden_states, grid_hws, merge_kernel_size=self.merge_kernel_size
)
return hidden_states
|