File size: 19,448 Bytes
f5378d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
import math
from copy import deepcopy
from typing import Union, Tuple, Sequence, Optional, List

import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers.activations import PytorchGELUTanh
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import is_flash_attn_2_available

from .configuration_moonvit import MoonViTConfig

if is_flash_attn_2_available():
    from flash_attn import flash_attn_varlen_func
else:
    flash_attn_varlen_func = None


def multihead_attention(
    q: torch.Tensor,
    k: torch.Tensor,
    v: torch.Tensor,
    q_cu_seqlens: Optional[torch.Tensor] = None,
    k_cu_seqlens: Optional[torch.Tensor] = None,
):
    """Multi-head attention using flash attention 2.

    Args:
        q, k, v: tensor of shape (batch_size, seqlen, num_heads, head_dim),
            or (tot_seqlens, num_heads, head_dim) if packing.
        q_cu_seqlens (torch.Tensor): cumulative sequence lengths of q.
            The first element should be 0 and the last element should be q.shape[0].
        k_cu_seqlens (torch.Tensor): cumulative sequence lengths of k.
            The first element should be 0 and the last element should be k.shape[0].

    Returns:
        output: shape (batch_size, seqlen, dim) or (tot_seqlens, dim) if packing,
            where dim = num_heads * head_dim
    """
    # Unified format legal check
    assert q.dim() == k.dim() == v.dim() == 3, "q, k, v must have 3 dims"
    assert q_cu_seqlens[-1] == q.shape[0], "q_cu_seqlens must sum to q.shape[0]"
    assert (
        k_cu_seqlens[-1] == k.shape[0] == v.shape[0]
    ), "k_cu_seqlens must sum to k.shape[0]"
    assert q.dtype in [
        torch.bfloat16,
        torch.float16,
    ], f"unsupported dtype {q.dtype} for multihead attn"

    max_seqlen_q = (q_cu_seqlens[1:] - q_cu_seqlens[:-1]).max().item()
    max_seqlen_k = (k_cu_seqlens[1:] - k_cu_seqlens[:-1]).max().item()
    attn_out = flash_attn_varlen_func(
        q,
        k,
        v,
        q_cu_seqlens,
        k_cu_seqlens,
        max_seqlen_q,
        max_seqlen_k,
        causal=False,
    )
    attn_out = attn_out.flatten(start_dim=-2)

    return attn_out


def sdpa_attention(
    q: torch.Tensor,
    k: torch.Tensor,
    v: torch.Tensor,
    q_cu_seqlens: Optional[torch.Tensor] = None,
    k_cu_seqlens: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    """SDPA attention.

    Args:
        q, k, v: tensor of shape (batch_size, seqlen, num_heads, head_dim),
            or (tot_seqlens, num_heads, head_dim) if packing.
    """
    seq_length = q.shape[0]
    attention_mask = torch.zeros(
        [1, seq_length, seq_length], device=q.device, dtype=torch.bool
    )
    for i in range(1, len(q_cu_seqlens)):
        attention_mask[
            ...,
            q_cu_seqlens[i - 1] : q_cu_seqlens[i],
            q_cu_seqlens[i - 1] : q_cu_seqlens[i],
        ] = True
    q = q.transpose(0, 1)
    k = k.transpose(0, 1)
    v = v.transpose(0, 1)
    attn_output = F.scaled_dot_product_attention(q, k, v, attention_mask, dropout_p=0.0)
    attn_output = attn_output.transpose(0, 1)
    attn_output = attn_output.reshape(seq_length, -1)
    return attn_output


def eager_attention(
    q: torch.Tensor,
    k: torch.Tensor,
    v: torch.Tensor,
    q_cu_seqlens: Optional[torch.Tensor] = None,
    k_cu_seqlens: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    seq_length = q.shape[0]
    attention_mask = torch.zeros(
        [1, seq_length, seq_length], device=q.device, dtype=torch.bool
    )
    for i in range(1, len(q_cu_seqlens)):
        attention_mask[
            ...,
            q_cu_seqlens[i - 1] : q_cu_seqlens[i],
            q_cu_seqlens[i - 1] : q_cu_seqlens[i],
        ] = True
    q = q.transpose(0, 1)
    k = k.transpose(0, 1)
    v = v.transpose(0, 1)

    attn_weight = q @ k.transpose(-2, -1) / math.sqrt(q.shape[-1])
    attn_weight += attention_mask
    attn_weight = torch.softmax(attn_weight, dim=-1, dtype=torch.float32).to(q.dtype)

    attn_output = attn_weight @ v
    attn_output = attn_output.transpose(0, 1)
    attn_output = attn_output.reshape(seq_length, -1)
    return attn_output


VL_VISION_ATTENTION_FUNCTIONS = {
    "flash_attention_2": multihead_attention,
    "sdpa": sdpa_attention,
    "eager": eager_attention,
}


def _apply_rope_input_validation(x, freqs_cis):
    assert x.ndim == freqs_cis.ndim + 1, (x.shape, freqs_cis.shape)
    assert x.shape[:-2] == freqs_cis.shape[:-1], (x.shape, freqs_cis.shape)
    assert x.shape[-1] == 2 * freqs_cis.shape[-1], (x.shape, freqs_cis.shape)
    assert freqs_cis.dtype == torch.complex64, freqs_cis.dtype


def apply_rope(
    xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor
) -> tuple[torch.Tensor, torch.Tensor]:
    """
    Args: (The leading dimensions of all inputs should be the same)
        xq: query, tensor of shape (..., num_heads, head_dim)
        xk: key, tensor of shape (..., num_heads, head_dim)
        freqs_cis: tensor of shape (..., head_dim/2), dtype=torch.complex64. It contains the precomputed cis(freqs) for each position in the 2D grid.
    Returns:
        xq_out, xk_out: tensors of shape (..., num_heads, head_dim)
    """
    _apply_rope_input_validation(xq, freqs_cis)
    _apply_rope_input_validation(xk, freqs_cis)

    freqs_cis = freqs_cis.unsqueeze(-2)  # ..., 1, head_dim/2
    # ..., num_heads, head_dim/2
    xq_ = torch.view_as_complex(xq.float().view(*xq.shape[:-1], -1, 2))
    xk_ = torch.view_as_complex(xk.float().view(*xq.shape[:-1], -1, 2))
    xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(-2)  # ..., num_heads, head_dim
    xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(-2)  # ..., num_heads, head_dim
    return xq_out.type_as(xq), xk_out.type_as(xk)


class Learnable2DInterpPosEmb(nn.Module):
    def __init__(
        self, height: int, width: int, dim: int, interpolation_mode: str = "bicubic"
    ) -> None:
        super().__init__()
        self.height = height
        self.width = width
        self.interpolation_mode = interpolation_mode
        self.weight = nn.Parameter(torch.empty(height, width, dim))
        self.reset_parameters()

    def reset_parameters(self):
        nn.init.normal_(self.weight)

    def forward(self, x: torch.Tensor, grid_hws: torch.Tensor) -> torch.Tensor:
        pos_embs = []
        for shape in grid_hws.tolist():
            if shape == self.weight.shape[:-1]:
                pos_embs.append(self.weight.flatten(end_dim=1))
            else:
                pos_embs.append(
                    F.interpolate(
                        self.weight.permute((2, 0, 1)).unsqueeze(0),
                        size=shape,
                        mode=self.interpolation_mode,
                    )
                    .squeeze(0)
                    .permute((1, 2, 0))
                    .flatten(end_dim=1)
                )
        out = x + torch.cat(pos_embs)
        return out


class MoonVisionPatchEmbed(nn.Module):

    def __init__(
        self,
        out_dim: int,
        in_dim: int = 3,
        patch_size: Union[int, Tuple[int, int]] = (14, 14),
        pos_emb_height: int = 14,
        pos_emb_width: int = 14,
    ):
        super().__init__()
        assert isinstance(
            patch_size, (int, Sequence)
        ), f"Invalid patch_size type: {type(patch_size)}"
        if isinstance(patch_size, int):
            patch_size = (patch_size, patch_size)
        assert (
            len(patch_size) == 2
        ), f"Expected patch_size to be a tuple of 2, got {patch_size}"
        self.patch_size = patch_size

        self.proj = nn.Conv2d(
            in_dim, out_dim, kernel_size=patch_size, stride=patch_size
        )

        self.pos_emb = Learnable2DInterpPosEmb(
            height=pos_emb_height, width=pos_emb_width, dim=out_dim
        )

    def forward(self, x: torch.Tensor, grid_hws: torch.Tensor) -> torch.Tensor:
        """
        Args:
            x (L, Channels): input tensor
            grid_hws (N, 2): grid height and width

        Returns:
            (L, Cout) tensor
        """
        x = self.proj(x).view(x.size(0), -1)
        # apply positional embedding
        x = self.pos_emb(x, grid_hws)
        return x


class Rope2DPosEmb(nn.Module):
    """2D rotary position embedding with multi-resolution support.

    This class is intended to be used in the following way:
    1. Before training, create an instance of Rope2DPosEmb. This instance will hold the precomputed cis.
    2. Before each forward pass, call `get_freqs_cis_by_*` to get the `freqs_cis` tensor for this iteration.
    3. During the forward pass, pass the `freqs_cis` tensor to each attention layer, and call `apply` just before each attention operation.
        The rope is shared across all attention layers and all heads.

    Refs:
    - RoFormer: https://arxiv.org/abs/2104.09864
    - VisionLLaMA: https://arxiv.org/abs/2403.00522
    - https://github.com/Meituan-AutoML/VisionLLaMA/blob/main/dit/models.py

    Args:
        dim (int): usually the multi-head attention dimension, should be divisible by 4 (TODO: relax this constraint if needed)
        max_height (int): the maximum height of the 2D grid
        max_width (int): the maximum width of the 2D grid
        theta_base (float): the base of the theta
        device (str): the device to store the precomputed cis
    """

    def __init__(self, dim: int, max_height: int, max_width: int, theta_base=10000):
        super().__init__()
        self.dim = dim
        assert self.dim % 4 == 0, "dim must be divisible by 4"
        self.max_height = max_height
        self.max_width = max_width
        self.theta_base = theta_base

        self.freqs_cis = None

    def extra_repr(self):
        return f"dim={self.dim}, max_height={self.max_height}, max_width={self.max_width}, theta_base={self.theta_base}"

    def _precompute_freqs_cis(self, device: torch.device) -> torch.Tensor:
        """Calculate the cis(freqs) for each position in the 2D grid.

        Return: complex tensor of shape (max_height, max_width, dim//2) and value:
            height axis: ret[h, w, 2*i] = cis(h * theta_base**(-4*i/dim))
            weight axis: ret[h, w, 2*i+1] = cis(w * theta_base**(-4*i/dim))   with (i in [0, dim//4))
            note: `cis` is a mathematical notation defined by cis x = cos x + i sin x,
        """
        N = self.max_height * self.max_width
        flat_pos = torch.arange(0, N).float().to(device)
        x_pos = flat_pos % self.max_width
        y_pos = flat_pos // self.max_width
        dim_range = (
            torch.arange(0, self.dim, 4)[: (self.dim // 4)].float().to(device)
        )  # C/4
        freqs = 1.0 / (self.theta_base ** (dim_range / self.dim))
        x_freqs = torch.outer(x_pos, freqs).float()  # N, C/4
        y_freqs = torch.outer(y_pos, freqs).float()  # N, C/4
        x_cis = torch.polar(torch.ones_like(x_freqs), x_freqs)  # N, C/4
        y_cis = torch.polar(torch.ones_like(y_freqs), y_freqs)  # N, C/4
        # N, C/4, 2
        freqs_cis = torch.cat(
            [x_cis.unsqueeze(dim=-1), y_cis.unsqueeze(dim=-1)], dim=-1
        )
        # max_height, max_width, C/2
        freqs_cis = freqs_cis.reshape(self.max_height, self.max_width, -1)
        return freqs_cis

    def get_freqs_cis(self, grid_hws: torch.Tensor) -> torch.Tensor:
        """
        Args:
            grid_hws (torch.Tensor): grid height and width

        Returns:
            freqs_cis: tensor of shape (sum(t * height * width), dim//2)
        """
        if self.freqs_cis is None:
            self.freqs_cis = self._precompute_freqs_cis(grid_hws.device)

        shapes = grid_hws.tolist()
        assert all(
            1 <= h <= self.max_height and 1 <= w <= self.max_width for h, w in shapes
        ), (
            shapes,
            self.max_height,
            self.max_width,
        )
        freqs_cis = torch.cat(
            [self.freqs_cis[:h, :w].reshape(-1, self.dim // 2) for h, w in shapes],
            dim=0,
        )
        return freqs_cis


class MLP2(nn.Module):
    """
    Args:
        dims: [in_dim, hidden_dim, out_dim]
        bias: whether to use bias in linear layer.
    """

    def __init__(self, dims: list[int], activation, bias=True):
        super().__init__()
        assert len(dims) == 3
        self.fc0 = nn.Linear(dims[0], dims[1], bias=bias)
        self.fc1 = nn.Linear(dims[1], dims[2], bias=bias)
        self.activation = activation
        for m in [self.fc0, self.fc1]:
            nn.init.trunc_normal_(m.weight, std=math.sqrt(2 / m.in_features))
            if m.bias is not None:
                nn.init.zeros_(m.bias)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.fc0(x)
        x = self.activation(x)
        return self.fc1(x)


class MoonVitEncoderLayer(nn.Module):

    def __init__(
        self,
        num_heads: int,
        hidden_dim: int,
        mlp_dim: int,
        *,
        attn_implementation: str = "eager",
        activation=F.gelu,
        attn_bias: bool = False,
    ):
        super().__init__()
        self.num_heads = num_heads
        self.hidden_dim = hidden_dim
        self.hidden_size_per_attention_head = self.hidden_dim // self.num_heads
        self.attn_implementation = attn_implementation

        self.norm0 = nn.LayerNorm(hidden_dim)
        self.norm1 = nn.LayerNorm(hidden_dim)
        self.mlp = MLP2([hidden_dim, mlp_dim, hidden_dim], activation)
        self.wqkv = nn.Linear(hidden_dim, hidden_dim * 3, bias=attn_bias)
        self.wo = nn.Linear(hidden_dim, hidden_dim, bias=attn_bias)

    def attention_qkvpacked(
        self,
        x: torch.Tensor,
        cu_seqlens: torch.Tensor,
        rope_freqs_cis: Optional[torch.Tensor] = None,
    ):
        """
        Args:
            x (torch.Tensor): (batch_size, seqlen, hidden_dim)
            cu_seqlens (torch.Tensor):
        """
        xqkv = self.wqkv(x)

        qkv_shape = xqkv.size()[:-1] + (
            3,
            self.num_heads,
            self.hidden_size_per_attention_head,
        )
        # xqkv: (batch_size, seqlen, 3, nheads, headdim)
        xqkv = xqkv.view(*qkv_shape)
        xq, xk, xv = torch.unbind(xqkv, dim=-3)

        xq, xk = apply_rope(xq, xk, rope_freqs_cis)

        attn_func = VL_VISION_ATTENTION_FUNCTIONS[self.attn_implementation]
        attn_out = attn_func(
            xq, xk, xv, q_cu_seqlens=cu_seqlens, k_cu_seqlens=cu_seqlens
        )

        attn_out = self.wo(attn_out)
        return attn_out

    def forward(
        self,
        hidden_states: torch.Tensor,
        cu_seqlens: torch.Tensor,
        rope_freqs_cis: Union[torch.Tensor, None] = None,
    ) -> torch.Tensor:
        """
        Args:
            hidden_states: non-packed (B, N, D) or packed (L, D). if non-packed, seqlens should be None, if packed, seqlens should be set

        Returns:
            output: same shape of input, non-packed (B, N, D) for non-packed input, (L, D) for packed input
        """
        residual = hidden_states
        hidden_states = self.norm0(hidden_states)
        attn_out = self.attention_qkvpacked(
            hidden_states, cu_seqlens, rope_freqs_cis=rope_freqs_cis
        )
        hidden_states = residual + attn_out

        residual = hidden_states
        hidden_states = self.mlp(self.norm1(hidden_states))
        hidden_states = residual + hidden_states
        return hidden_states


class MoonVitEncoder(nn.Module):

    def __init__(
        self,
        hidden_dim: int,
        num_layers: int,
        block_cfg: dict,
    ) -> None:
        super().__init__()

        self.rope_2d = Rope2DPosEmb(
            block_cfg["hidden_dim"] // block_cfg["num_heads"], 512, 512
        )
        self.blocks = nn.ModuleList(
            [MoonVitEncoderLayer(**block_cfg) for _ in range(num_layers)]
        )
        self.final_layernorm = nn.LayerNorm(hidden_dim)

    def forward(
        self, hidden_states: torch.Tensor, grid_hws: torch.Tensor
    ) -> torch.Tensor:
        rope_freqs_cis = self.rope_2d.get_freqs_cis(grid_hws=grid_hws)

        lengths = torch.cat(
            (
                torch.zeros(1, device=hidden_states.device, dtype=grid_hws.dtype),
                grid_hws[:, 0] * grid_hws[:, 1],
            )
        )
        cu_seqlens = lengths.cumsum(dim=0, dtype=torch.int32)

        for _, block in enumerate(self.blocks):
            hidden_states = block(
                hidden_states, cu_seqlens, rope_freqs_cis=rope_freqs_cis
            )

        hidden_states = self.final_layernorm(hidden_states)

        return hidden_states


def patch_merger(
    x: torch.Tensor,
    grid_hws: torch.Tensor,
    merge_kernel_size: list[int, int] = (2, 2),
) -> List[torch.Tensor]:
    d_model = x.size(-1)

    outputs = []
    pre_sum = 0
    for x_shape in grid_hws.tolist():
        height, width = x_shape[0], x_shape[1]
        # Get the current sequence
        seq = x[pre_sum : pre_sum + height * width]
        # Reshape along self.merge_kernel_size and concat to the last dimension
        kernel_height, kernel_width = merge_kernel_size
        new_height, new_width = height // kernel_height, width // kernel_width
        reshaped_seq = seq.view(
            new_height, kernel_height, new_width, kernel_width, d_model
        )
        reshaped_seq = reshaped_seq.permute(0, 2, 1, 3, 4).contiguous()
        padded_seq = reshaped_seq.view(
            new_height * new_width, kernel_height * kernel_width, -1
        )
        outputs.append(padded_seq)
        pre_sum += height * width

    return outputs


class MoonVitPretrainedModel(PreTrainedModel):
    config_class = MoonViTConfig
    model_type = "moonvit"
    _no_split_modules = ["PackingTransformer"]
    _supports_flash_attn_2 = True
    _supports_sdpa = True

    def __init__(self, config: MoonViTConfig, *inputs, **kwargs):
        super().__init__(config, *inputs, **kwargs)
        config = deepcopy(config)
        self.merge_kernel_size = config.merge_kernel_size
        self.patch_size = config.patch_size
        self.patch_embed = MoonVisionPatchEmbed(
            out_dim=config.hidden_size,
            patch_size=config.patch_size,
            pos_emb_height=config.init_pos_emb_height,
            pos_emb_width=config.init_pos_emb_width,
        )

        self.encoder = MoonVitEncoder(
            hidden_dim=config.hidden_size,
            num_layers=config.num_hidden_layers,
            block_cfg={
                "num_heads": config.num_attention_heads,
                "hidden_dim": config.hidden_size,
                "mlp_dim": config.intermediate_size,
                "activation": PytorchGELUTanh(),
                "attn_bias": True,
                "attn_implementation": config._attn_implementation,
            },
        )

    def forward(
        self, pixel_values: torch.Tensor, grid_hws: torch.Tensor
    ) -> torch.Tensor:
        """
        Args:
            pixel_values (torch.Tensor): The input pixel values.
            grid_hws (torch.Tensor): The grid height and width.

        Returns:
            torch.Tensor: The output tokens.
        """
        hidden_states = self.patch_embed(pixel_values, grid_hws)
        hidden_states = self.encoder(hidden_states, grid_hws)
        hidden_states = patch_merger(
            hidden_states, grid_hws, merge_kernel_size=self.merge_kernel_size
        )
        return hidden_states