"""Miscovery model implementation""" | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.modeling_outputs import Seq2SeqLMOutput | |
import torch | |
import torch.nn as nn | |
from .configuration_miscovery import CustomTransformerConfig | |
# Import the actual model architecture | |
# This is a simplified placeholder that should be replaced with your actual model code | |
class CustomTransformerModel(PreTrainedModel): | |
config_class = CustomTransformerConfig | |
main_input_name = "input_ids" | |
def __init__(self, config): | |
super().__init__(config) | |
# Initialize model components | |
# This will need to be replaced with your actual model architecture | |
self.model = None # Your model implementation here | |
def forward( | |
self, | |
input_ids=None, | |
decoder_input_ids=None, | |
attention_mask=None, | |
decoder_attention_mask=None, | |
labels=None, | |
**kwargs | |
): | |
# Forward pass implementation | |
# This will need to be replaced with your actual forward method | |
return Seq2SeqLMOutput( | |
loss=None, | |
logits=None, | |
) | |
def prepare_inputs_for_generation( | |
self, | |
decoder_input_ids, | |
past_key_values=None, | |
attention_mask=None, | |
use_cache=None, | |
encoder_outputs=None, | |
**kwargs | |
): | |
# Prepare inputs implementation for generation | |
# This will need to be replaced with your actual method | |
pass | |