File size: 34,490 Bytes
6e5b56c f4785f2 6e5b56c f4785f2 6e5b56c f4785f2 6e5b56c f4785f2 6e5b56c f4785f2 6e5b56c f4785f2 6e5b56c f4785f2 6e5b56c f4785f2 6e5b56c f4785f2 6e5b56c f4785f2 6e5b56c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 |
"""Miscovery model implementation."""
import torch
import math
import torch.nn as nn
from transformers import PretrainedConfig, PreTrainedModel
from transformers.modeling_outputs import Seq2SeqLMOutput
from .configuration_miscovery import CustomTransformerConfig
class RMSNorm(nn.Module):
def __init__(self, dim, eps=1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def forward(self, x):
rms = torch.sqrt(torch.mean(x ** 2, dim=-1, keepdim=True) + self.eps)
x_normalized = x / rms
return self.weight * x_normalized
class LayerScale(nn.Module):
def __init__(self, dim, init_values=1e-5):
super().__init__()
self.gamma = nn.Parameter(init_values * torch.ones(dim))
def forward(self, x):
return self.gamma * x
class RotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000.0):
super().__init__()
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
self.max_seq_len_cached = max_position_embeddings
self._update_cos_sin_cache(max_position_embeddings)
def _update_cos_sin_cache(self, seq_len):
t = torch.arange(seq_len, device=self.inv_freq.device)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
def forward(self, x, seq_len=None):
if seq_len is None:
seq_len = x.shape[1]
if seq_len > self.max_seq_len_cached:
self.max_seq_len_cached = seq_len
self._update_cos_sin_cache(seq_len)
return (
self.cos_cached[:, :, :seq_len, ...],
self.sin_cached[:, :, :seq_len, ...]
)
def rotate_half(x):
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_embeddings(q, k, cos, sin):
q_seq_len = q.shape[2]
k_seq_len = k.shape[2]
q_cos = cos[:, :, :q_seq_len, :]
q_sin = sin[:, :, :q_seq_len, :]
k_cos = cos[:, :, :k_seq_len, :]
k_sin = sin[:, :, :k_seq_len, :]
q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
return q_embed, k_embed
# Flash attention check
try:
from flash_attn import flash_attn_func
FLASH_ATTENTION_AVAILABLE = True
except ImportError:
FLASH_ATTENTION_AVAILABLE = False
def create_decoder_mask(tgt, pad_idx):
tgt_pad_mask = (tgt != pad_idx).unsqueeze(1).unsqueeze(2)
tgt_len = tgt.size(1)
tgt_sub_mask = torch.tril(torch.ones((tgt_len, tgt_len), device=tgt.device)).bool()
tgt_mask = tgt_pad_mask & tgt_sub_mask.unsqueeze(0)
return tgt_mask
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, num_heads, dropout=0.1, max_len=2048, use_flash_attn=False):
super(MultiHeadAttention, self).__init__()
self.num_heads = num_heads
self.d_model = d_model
self.use_flash_attn = use_flash_attn and FLASH_ATTENTION_AVAILABLE
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
self.depth = d_model // num_heads
self.q_proj = nn.Linear(d_model, d_model)
self.k_proj = nn.Linear(d_model, d_model)
self.v_proj = nn.Linear(d_model, d_model)
self.out_proj = nn.Linear(d_model, d_model)
self.attention_dropout = nn.Dropout(dropout)
self.output_dropout = nn.Dropout(dropout)
self.layer_scale = LayerScale(d_model, init_values=1e-5)
self.rotary_emb = RotaryEmbedding(self.depth, max_position_embeddings=max_len)
def split_heads(self, x, batch_size):
x = x.view(batch_size, -1, self.num_heads, self.depth)
return x.transpose(1, 2)
def forward(self, query, key=None, value=None, mask=None):
batch_size = query.shape[0]
if key is None:
key = query
if value is None:
value = query
q = self.split_heads(self.q_proj(query), batch_size)
k = self.split_heads(self.k_proj(key), batch_size)
v = self.split_heads(self.v_proj(value), batch_size)
max_seq_len = max(q.shape[2], k.shape[2])
cos, sin = self.rotary_emb(q, seq_len=max_seq_len)
q, k = apply_rotary_embeddings(q, k, cos, sin)
if self.use_flash_attn and q.is_cuda:
try:
q = q.transpose(1, 2)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
if mask is not None:
attn_mask = mask.float()
attn_mask = (1.0 - attn_mask) * -10000.0
if len(attn_mask.shape) == 4:
attn_mask = attn_mask.squeeze(1)
else:
attn_mask = None
attn_output = flash_attn_func(
q, k, v,
dropout_p=self.attention_dropout.p,
attn_mask=attn_mask,
causal=False
)
if attn_output.shape[1] != self.num_heads:
attn_output = attn_output.transpose(1, 2)
except Exception as e:
# Fallback to standard attention
if q.shape[1] != self.num_heads:
q = q.transpose(1, 2)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
attn_logits = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.depth)
if mask is not None:
attn_logits = attn_logits.masked_fill(~mask, float('-inf'))
attn_weights = self.attention_dropout(torch.nn.functional.softmax(attn_logits, dim=-1))
attn_output = torch.matmul(attn_weights, v)
else:
attn_logits = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.depth)
if mask is not None:
attn_logits = attn_logits.masked_fill(~mask, float('-inf'))
attn_weights = self.attention_dropout(torch.nn.functional.softmax(attn_logits, dim=-1))
attn_output = torch.matmul(attn_weights, v)
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, -1, self.d_model)
output = self.out_proj(attn_output)
output = self.layer_scale(output)
return self.output_dropout(output)
class FeedForward(nn.Module):
def __init__(self, d_model, d_ff=None, dropout=0.1):
super(FeedForward, self).__init__()
if d_ff is None:
d_ff = 4 * d_model
self.w1 = nn.Linear(d_model, d_ff)
self.w2 = nn.Linear(d_model, d_ff)
self.w3 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
self.layer_scale = LayerScale(d_model, init_values=1e-5)
def forward(self, x):
gated_output = self.w1(x) * torch.sigmoid(self.w2(x) * 1.0)
output = self.w3(self.dropout(gated_output))
return self.layer_scale(output)
class TransformerEncoderLayer(nn.Module):
def __init__(self, d_model, num_heads, d_ff, dropout=0.1):
super(TransformerEncoderLayer, self).__init__()
self.norm1 = RMSNorm(d_model)
self.norm2 = RMSNorm(d_model)
self.self_attention = MultiHeadAttention(d_model, num_heads, dropout)
self.feed_forward = FeedForward(d_model, d_ff, dropout)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
def forward(self, x, mask=None):
attn_input = self.norm1(x)
attn_output = self.self_attention(attn_input, mask=mask)
x = x + self.dropout1(attn_output)
ff_input = self.norm2(x)
ff_output = self.feed_forward(ff_input)
x = x + self.dropout2(ff_output)
return x
class TransformerEncoder(nn.Module):
def __init__(self, d_model, num_heads, d_ff, num_layers, vocab_size, max_len, dropout=0.1):
super(TransformerEncoder, self).__init__()
self.embedding = nn.Embedding(vocab_size, d_model)
self.embed_scale = math.sqrt(d_model)
self.embed_dropout = nn.Dropout(dropout)
self.layers = nn.ModuleList([
TransformerEncoderLayer(d_model, num_heads, d_ff, dropout)
for _ in range(num_layers)
])
self.norm = RMSNorm(d_model)
def forward(self, x, mask=None):
x = self.embedding(x) * self.embed_scale
x = self.embed_dropout(x)
for layer in self.layers:
x = layer(x, mask)
return self.norm(x)
class TransformerDecoderLayer(nn.Module):
def __init__(self, d_model, num_heads, d_ff, dropout=0.1):
super(TransformerDecoderLayer, self).__init__()
self.norm1 = RMSNorm(d_model)
self.norm2 = RMSNorm(d_model)
self.norm3 = RMSNorm(d_model)
self.self_attention = MultiHeadAttention(d_model, num_heads, dropout)
self.cross_attention = MultiHeadAttention(d_model, num_heads, dropout)
self.feed_forward = FeedForward(d_model, d_ff, dropout)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
def forward(self, x, enc_output, src_mask=None, tgt_mask=None):
attn_input = self.norm1(x)
self_attn_output = self.self_attention(attn_input, mask=tgt_mask)
x = x + self.dropout1(self_attn_output)
cross_attn_input = self.norm2(x)
cross_attn_output = self.cross_attention(
query=cross_attn_input,
key=enc_output,
value=enc_output,
mask=src_mask
)
x = x + self.dropout2(cross_attn_output)
ff_input = self.norm3(x)
ff_output = self.feed_forward(ff_input)
x = x + self.dropout3(ff_output)
return x
class TransformerDecoder(nn.Module):
def __init__(self, d_model, num_heads, d_ff, num_layers, vocab_size, max_len, dropout=0.1):
super(TransformerDecoder, self).__init__()
self.embedding = nn.Embedding(vocab_size, d_model)
self.embed_scale = math.sqrt(d_model)
self.embed_dropout = nn.Dropout(dropout)
self.layers = nn.ModuleList([
TransformerDecoderLayer(d_model, num_heads, d_ff, dropout)
for _ in range(num_layers)
])
self.norm = RMSNorm(d_model)
self.output_projection = nn.Linear(d_model, vocab_size)
def forward(self, x, enc_output, src_mask=None, tgt_mask=None):
x = self.embedding(x) * self.embed_scale
x = self.embed_dropout(x)
for layer in self.layers:
x = layer(x, enc_output, src_mask, tgt_mask)
x = self.norm(x)
return self.output_projection(x)
class Transformer(nn.Module):
def __init__(self, d_model, num_heads, d_ff, num_encoder_layers, num_decoder_layers,
vocab_size, max_len, pad_idx, dropout=0.1):
super(Transformer, self).__init__()
self.encoder = TransformerEncoder(d_model, num_heads, d_ff, num_encoder_layers,
vocab_size, max_len, dropout)
self.decoder = TransformerDecoder(d_model, num_heads, d_ff, num_decoder_layers,
vocab_size, max_len, dropout)
self.pad_idx = pad_idx
def create_masks(self, src, tgt):
if not isinstance(src, torch.Tensor):
src = torch.tensor(src)
if not isinstance(tgt, torch.Tensor):
tgt = torch.tensor(tgt)
src_pad_mask = (src != self.pad_idx).unsqueeze(1).unsqueeze(2)
tgt_pad_mask = (tgt != self.pad_idx).unsqueeze(1).unsqueeze(2)
tgt_len = tgt.size(1)
tgt_sub_mask = torch.tril(torch.ones((tgt_len, tgt_len), device=tgt.device)).bool()
tgt_mask = tgt_pad_mask & tgt_sub_mask.unsqueeze(0)
return src_pad_mask, tgt_mask
def forward(self, src, tgt):
src_mask, tgt_mask = self.create_masks(src, tgt)
enc_output = self.encoder(src, src_mask)
dec_output = self.decoder(tgt, enc_output, src_mask, tgt_mask)
return dec_output
class CustomTransformerModel(PreTrainedModel):
config_class = CustomTransformerConfig
main_input_name = "input_ids"
def __init__(self, config):
super().__init__(config)
self.model = Transformer(
d_model=config.d_model,
num_heads=config.num_heads,
d_ff=config.d_ff,
num_encoder_layers=config.num_encoder_layers,
num_decoder_layers=config.num_decoder_layers,
vocab_size=config.vocab_size,
max_len=config.max_position_embeddings,
pad_idx=config.pad_token_id,
dropout=config.dropout
)
self.encoder = self.model.encoder
self.decoder = self.model.decoder
# Store key model attributes
self.config = config
# Add generation capability
self.generate_response = self.custom_generate.__get__(self)
def forward(
self,
input_ids=None,
decoder_input_ids=None,
attention_mask=None,
decoder_attention_mask=None,
labels=None,
label_smoothing=0.1,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
**kwargs
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if decoder_input_ids is None and labels is not None:
decoder_input_ids = self._shift_right(labels)
elif decoder_input_ids is None:
decoder_input_ids = input_ids
outputs = self.model(src=input_ids, tgt=decoder_input_ids)
loss = None
if labels is not None:
if label_smoothing > 0:
loss_fct = nn.CrossEntropyLoss(
ignore_index=self.config.pad_token_id,
label_smoothing=label_smoothing
)
else:
loss_fct = nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id)
shifted_logits = outputs[:, :-1, :].contiguous()
shifted_labels = labels[:, 1:].contiguous()
loss = loss_fct(shifted_logits.view(-1, self.config.vocab_size), shifted_labels.view(-1))
if not return_dict:
return (loss, outputs) if loss is not None else outputs
return Seq2SeqLMOutput(
loss=loss,
logits=outputs,
past_key_values=None,
decoder_hidden_states=None,
decoder_attentions=None,
cross_attentions=None,
encoder_last_hidden_state=None,
encoder_hidden_states=None,
encoder_attentions=None,
)
def _shift_right(self, input_ids):
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = self.config.bos_token_id
return shifted_input_ids
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past_key_values=None,
attention_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs
):
# Get the input_ids for encoding if not already provided
input_ids = kwargs.get("input_ids", None)
# If we have past_key_values, we only need the last token
if past_key_values is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
# Compute encoder outputs if not provided
if encoder_outputs is None and input_ids is not None:
src_pad_mask = (input_ids != self.config.pad_token_id).unsqueeze(1).unsqueeze(2)
encoder_outputs = self.model.encoder(input_ids, src_pad_mask)
return {
"decoder_input_ids": decoder_input_ids,
"encoder_outputs": encoder_outputs,
"attention_mask": attention_mask,
"use_cache": use_cache,
"past_key_values": past_key_values,
"input_ids": input_ids, # Pass through for potential re-encoding
}
def _reorder_cache(self, past, beam_idx):
# Implement if you have a cache mechanism for faster generation
# Currently, we don't have a cache implementation
return past
def generate(
self,
input_ids=None,
attention_mask=None,
max_length=20,
min_length=0,
do_sample=True,
early_stopping=False,
num_beams=1,
temperature=1.0,
top_k=50,
top_p=0.95,
repetition_penalty=1.0,
bad_words_ids=None,
bos_token_id=None,
pad_token_id=None,
eos_token_id=None,
length_penalty=1.0,
no_repeat_ngram_size=0,
encoder_no_repeat_ngram_size=0,
num_return_sequences=1,
decoder_start_token_id=None,
use_cache=True,
**model_kwargs
):
"""Generate text using the model with various sampling strategies."""
# Set defaults from config if not provided
if pad_token_id is None:
pad_token_id = self.config.pad_token_id
if bos_token_id is None:
bos_token_id = self.config.bos_token_id
if eos_token_id is None:
eos_token_id = self.config.eos_token_id
# Prepare encoder outputs if not already provided
if "encoder_outputs" not in model_kwargs:
encoder_kwargs = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"return_dict": True,
}
# Generate encoder outputs
src_pad_mask = (input_ids != pad_token_id).unsqueeze(1).unsqueeze(2)
encoder_outputs = self.model.encoder(input_ids, src_pad_mask)
model_kwargs["encoder_outputs"] = encoder_outputs
# Start with BOS token if needed
if decoder_start_token_id is None:
decoder_start_token_id = bos_token_id
decoder_input_ids = torch.full(
(input_ids.shape[0], 1),
decoder_start_token_id,
dtype=input_ids.dtype,
device=input_ids.device
)
# Simple greedy decoding
if num_beams == 1 and not do_sample:
return self._greedy_search(
decoder_input_ids,
max_length=max_length,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
**model_kwargs
)
# Temperature sampling
if do_sample:
return self._sample(
decoder_input_ids,
max_length=max_length,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
**model_kwargs
)
# Beam search (simple implementation)
return self._beam_search(
decoder_input_ids,
max_length=max_length,
num_beams=num_beams,
length_penalty=length_penalty,
early_stopping=early_stopping,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
**model_kwargs
)
def _greedy_search(
self,
decoder_input_ids,
max_length,
pad_token_id=None,
eos_token_id=None,
**model_kwargs
):
"""Simple greedy decoding implementation."""
# Initialize sequence scores
batch_size = decoder_input_ids.shape[0]
# Keep track of which sequences are finished
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=decoder_input_ids.device)
# Start generation
for _ in range(max_length - 1):
model_inputs = self.prepare_inputs_for_generation(
decoder_input_ids,
**model_kwargs
)
# Get encoder output if needed
encoder_outputs = model_kwargs.get("encoder_outputs")
# Create masks
src_mask = None
if "input_ids" in model_inputs:
src_mask = (model_inputs["input_ids"] != pad_token_id).unsqueeze(1).unsqueeze(2)
tgt_mask = create_decoder_mask(decoder_input_ids, pad_token_id)
# Forward pass
outputs = self.model.decoder(decoder_input_ids, encoder_outputs, src_mask, tgt_mask)
# Get next token with argmax
next_token_logits = outputs[:, -1, :]
next_tokens = torch.argmax(next_token_logits, dim=-1)
# Update generated ids, sequences that hit EOS are marked as finished
if eos_token_id is not None:
# Set tokens to 0 (pad_token_id) if sequence is finished
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
# Update which sequences are still unfinished
unfinished_sequences = unfinished_sequences.mul((next_tokens != eos_token_id).long())
# Add new tokens to input_ids
decoder_input_ids = torch.cat([decoder_input_ids, next_tokens.unsqueeze(-1)], dim=-1)
# Stop when all sequences are finished
if unfinished_sequences.max() == 0:
break
return decoder_input_ids
def _sample(
self,
decoder_input_ids,
max_length,
temperature=1.0,
top_k=50,
top_p=0.95,
repetition_penalty=1.0,
pad_token_id=None,
eos_token_id=None,
**model_kwargs
):
"""Temperature sampling with top-k and top-p filtering."""
# Initialize sequence scores
batch_size = decoder_input_ids.shape[0]
# Keep track of which sequences are finished
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=decoder_input_ids.device)
# Start generation
for _ in range(max_length - 1):
model_inputs = self.prepare_inputs_for_generation(
decoder_input_ids,
**model_kwargs
)
# Get encoder output if needed
encoder_outputs = model_kwargs.get("encoder_outputs")
# Create masks
src_mask = None
if "input_ids" in model_inputs:
src_mask = (model_inputs["input_ids"] != pad_token_id).unsqueeze(1).unsqueeze(2)
tgt_mask = create_decoder_mask(decoder_input_ids, pad_token_id)
# Forward pass
outputs = self.model.decoder(decoder_input_ids, encoder_outputs, src_mask, tgt_mask)
# Get next token logits
next_token_logits = outputs[:, -1, :].clone()
# Apply temperature
next_token_logits = next_token_logits / temperature
# Apply repetition penalty
if repetition_penalty != 1.0:
for i in range(batch_size):
for previous_token in set(decoder_input_ids[i].tolist()):
next_token_logits[i, previous_token] /= repetition_penalty
# Apply top-k filtering
if top_k > 0:
top_k = min(top_k, next_token_logits.size(-1))
indices_to_remove = next_token_logits < torch.topk(next_token_logits, top_k)[0][..., -1, None]
next_token_logits[indices_to_remove] = -float("Inf")
# Apply top-p (nucleus) filtering
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True)
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
# Scatter sorted tensors to original indexing
indices_to_remove = sorted_indices_to_remove.scatter(
dim=-1, index=sorted_indices, src=sorted_indices_to_remove
)
next_token_logits[indices_to_remove] = -float("Inf")
# Sample next token
probs = torch.softmax(next_token_logits, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
# Update generated ids, sequences that hit EOS are marked as finished
if eos_token_id is not None:
# Set tokens to 0 (pad_token_id) if sequence is finished
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
# Update which sequences are still unfinished
unfinished_sequences = unfinished_sequences.mul((next_tokens != eos_token_id).long())
# Add new tokens to input_ids
decoder_input_ids = torch.cat([decoder_input_ids, next_tokens.unsqueeze(-1)], dim=-1)
# Stop when all sequences are finished
if unfinished_sequences.max() == 0:
break
return decoder_input_ids
def _beam_search(
self,
decoder_input_ids,
max_length,
num_beams=4,
length_penalty=1.0,
early_stopping=False,
pad_token_id=None,
eos_token_id=None,
**model_kwargs
):
"""Simple beam search implementation."""
# This is a simplified implementation and might not be optimal
batch_size = decoder_input_ids.shape[0]
vocab_size = self.config.vocab_size
# Expand inputs for beam search
encoder_outputs = model_kwargs.get("encoder_outputs")
input_ids = model_kwargs.get("input_ids")
attention_mask = model_kwargs.get("attention_mask")
# Expand input_ids for beam search
decoder_input_ids = decoder_input_ids.unsqueeze(1).expand(batch_size, num_beams, -1)
decoder_input_ids = decoder_input_ids.contiguous().view(batch_size * num_beams, -1)
# Start with a single beam per sample
beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=decoder_input_ids.device)
beam_scores[:, 1:] = -1e9 # All beams except the first start with -inf
beam_scores = beam_scores.view(-1) # Flatten
# Initialize sequence list
generated_sequences = []
# Start generation
for step in range(max_length - 1):
model_inputs = self.prepare_inputs_for_generation(
decoder_input_ids,
encoder_outputs=encoder_outputs,
input_ids=input_ids,
attention_mask=attention_mask,
**model_kwargs
)
# Create masks
src_mask = None
if "input_ids" in model_inputs:
src_mask = (model_inputs["input_ids"] != pad_token_id).unsqueeze(1).unsqueeze(2)
tgt_mask = create_decoder_mask(decoder_input_ids, pad_token_id)
# Forward pass
outputs = self.model.decoder(decoder_input_ids, encoder_outputs, src_mask, tgt_mask)
# Get next token logits
next_token_logits = outputs[:, -1, :]
# Calculate log probabilities
next_token_scores = torch.log_softmax(next_token_logits, dim=-1)
# Add beam scores
next_token_scores = next_token_scores + beam_scores[:, None]
# Reshape for beam search
next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)
# Get the top-k beams
next_scores, next_tokens = torch.topk(next_token_scores, num_beams, dim=1, largest=True, sorted=True)
# Get new beam indices and token indices
next_beam_indices = (next_tokens / vocab_size).long()
next_token_indices = next_tokens % vocab_size
# Update beam scores
beam_scores = next_scores.view(-1)
# Update decoder input ids
decoder_input_ids = torch.cat([
decoder_input_ids[next_beam_indices.view(-1)],
next_token_indices.view(-1, 1)
], dim=-1)
# Check if any beam is finished
eos_mask = next_token_indices.eq(eos_token_id)
if eos_mask.any():
# Add finished beams to generated sequences
for idx in range(batch_size):
if eos_mask[idx].any():
# Get best beam for this sample
best_beam = decoder_input_ids[idx * num_beams].clone()
generated_sequences.append(best_beam)
# Early stopping if all beams are finished
if early_stopping and len(generated_sequences) == batch_size:
break
# If no sequences were generated, return the current state
if len(generated_sequences) == 0:
return decoder_input_ids.view(batch_size, num_beams, -1)[:, 0, :]
# Stack generated sequences and return
return torch.stack(generated_sequences)
def custom_generate(
self,
prompt,
tokenizer,
max_length=512,
device='cuda',
temperature=1.0,
top_k=50,
top_p=0.95,
repetition_penalty=1.0,
do_sample=True
):
"""
Enhanced text generation with sampling options
"""
self.eval()
input_ids = tokenizer(
prompt,
return_tensors="pt",
max_length=512,
padding='max_length',
truncation=True
)["input_ids"].to(device)
bos_token_id = tokenizer.bos_token_id
if bos_token_id is None:
if tokenizer.cls_token_id is not None:
bos_token_id = tokenizer.cls_token_id
else:
bos_token_id = 1 # Fallback
decoder_input = torch.tensor([[bos_token_id]], device=device)
generated_tokens = [bos_token_id]
# Stop tokens to check
stop_tokens = []
if tokenizer.eos_token_id is not None:
stop_tokens.append(tokenizer.eos_token_id)
if tokenizer.sep_token_id is not None:
stop_tokens.append(tokenizer.sep_token_id)
for _ in range(max_length):
src_mask, tgt_mask = self.model.create_masks(input_ids, decoder_input)
enc_output = self.model.encoder(input_ids, src_mask)
dec_output = self.model.decoder(decoder_input, enc_output, src_mask, tgt_mask)
next_token_logits = dec_output[:, -1, :].squeeze(0)
# Apply temperature
next_token_logits = next_token_logits / temperature
# Apply repetition penalty
if repetition_penalty != 1.0:
for prev_token in generated_tokens:
next_token_logits[prev_token] /= repetition_penalty
# Filter with top-k
if top_k > 0:
indices_to_remove = next_token_logits < torch.topk(next_token_logits, top_k)[0][..., -1, None]
next_token_logits[indices_to_remove] = float('-inf')
# Filter with top-p (nucleus sampling)
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True)
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices[sorted_indices_to_remove]
next_token_logits[indices_to_remove] = float('-inf')
# Sample or greedy selection
if do_sample:
probs = torch.softmax(next_token_logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
else:
next_token = torch.argmax(next_token_logits, dim=-1).unsqueeze(0)
next_token = next_token.unsqueeze(0)
decoder_input = torch.cat([decoder_input, next_token], dim=1)
generated_tokens.append(next_token.item())
# Check stop condition
if next_token.item() in stop_tokens:
break
# Check for repetition
if len(generated_tokens) >= 4:
# Stop if generating the same token 4 times in a row
if len(set(generated_tokens[-4:])) == 1:
break
output_text = tokenizer.decode(decoder_input[0].tolist(), skip_special_tokens=True)
return output_text |