train_checkpoints2

This model is a fine-tuned version of dennisjooo/Birds-Classifier-EfficientNetB2 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4826
  • F1: 0.8686
  • Precision: 0.8782
  • Recall: 0.8635
  • Accuracy: 0.8686

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss F1 Precision Recall Accuracy
0.1145 1.0 15 0.5836 0.8608 0.8776 0.8520 0.8613
0.129 2.0 30 0.8019 0.8322 0.8634 0.8192 0.8358
0.2085 3.0 45 0.7550 0.8083 0.8355 0.8042 0.8212
0.1722 4.0 60 0.7524 0.8298 0.8422 0.8357 0.8394
0.19 5.0 75 0.5542 0.8743 0.8910 0.8679 0.8723
0.1612 6.0 90 0.8325 0.8114 0.8410 0.8063 0.8066
0.2009 7.0 105 0.4425 0.8900 0.8904 0.8911 0.8942
0.209 8.0 120 0.6705 0.8126 0.8482 0.8074 0.8358
0.2188 9.0 135 0.5906 0.8387 0.8551 0.8350 0.8467
0.1962 10.0 150 0.4826 0.8686 0.8782 0.8635 0.8686

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
1
Safetensors
Model size
7.78M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for microwaveablemax/train_checkpoints2

Finetuned
(1)
this model

Evaluation results