Phi-4-multimodal-instruct / configuration_phi4_multimodal.py
cyrilvallez's picture
cyrilvallez HF Staff
Upload folder using huggingface_hub
698b586 verified
raw
history blame
24.4 kB
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/phi4_multimodal/modular_phi4_multimodal.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_phi4_multimodal.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# Copyright 2025 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from transformers.configuration_utils import PretrainedConfig
class Phi4MultimodalVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Phi4MultimodalVisionModel`]. It is used to instantiate a
Phi4Multimodal vision encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the vision encoder of
[microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 1152):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 4304):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 27):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
Number of channels in the input images.
image_size (`int`, *optional*, defaults to 448):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 14):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
crop_size (`int`, *optional*, defaults to 448):
Crop size for the input images.
image_token_id (`int`, *optional*, defaults to 200010):
The image token id.
feature_layer (`int`, *optional*, defaults to -2):
The index of the layer of the encoder from which to extract image features.
Example:
```python
>>> from transformers import Phi4MultimodalVisionConfig
>>> # Initializing a Phi4MultimodalVisionConfig with microsoft/Phi-4-multimodal-instruct style configuration
>>> configuration = Phi4MultimodalVisionConfig()
```"""
model_type = "phi4_multimodal_vision"
base_config_key = "vision_config"
def __init__(
self,
hidden_size=1152,
intermediate_size=4304,
num_hidden_layers=27,
num_attention_heads=16,
num_channels=3,
image_size=448,
patch_size=14,
hidden_act="gelu_pytorch_tanh",
layer_norm_eps=1e-6,
attention_dropout=0.0,
crop_size: int = 448,
image_token_id: int = 200010,
feature_layer: int = -2,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.crop_size = crop_size
self.image_token_id = image_token_id
self.feature_layer = feature_layer
class Phi4MultimodalAudioConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Phi4MultimodalAudioModel`]. It is used to instantiate a
Phi4Multimodal audio encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the audio encoder of
[microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 1024):
Dimensionality of the encoder layers.
intermediate_size (`int`, *optional*, defaults to 1536):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_blocks (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
activation (`str`, *optional*, defaults to `"swish"`):
The non-linear activation function in the MLPs.
chunk_size (`int`, *optional*, defaults to -1):
The chunk size to create the masks.
left_chunk (`int`, *optional*, defaults to 18):
The left chunk to create the masks.
dropout_rate (`float`, *optional*, defaults to 0.0):
The dropout ratio.
ext_pw_out_channel (`int`, *optional*, defaults to 1024):
Number of out channels in the point-wise conv modules.
depthwise_seperable_out_channel (`int`, *optional*, defaults to 1024):
Number of out channels in the depth-wise separable conv modules.
depthwise_multiplier (`int`, *optional*, defaults to 1):
Input size multiplier for the depth-wise separable conv modules.
kernel_size (`int`, *optional*, defaults to 3):
Kernel size for the depth-wise separable conv modules.
conv_activation (`str`, *optional*, defaults to `"swish"`):
The non-linear activation function in the conv modules.
input_size (`int`, *optional*, defaults to 80):
Input size for the audio model.
conv_glu_type (`str`, *optional*, defaults to `"swish"`):
The non-linear activation function in the point-wise conv modules.
time_reduction (`int`, *optional*, defaults to 8):
Time reduction (subsampling factor).
bias_max_distance (`int`, *optional*, defaults to 1000):
Max distance for the relative attention bias module.
bias_symmetric (`bool`, *optional*, defaults to `False`):
Whether the relative attention bias should be symmetric or not.
nemo_activation (`str`, *optional*, defaults to `"relu"`):
The non-linear activation function in the nemo conv modules.
nemo_conv_channels (`int`, *optional*, defaults to 1024):
Number of channels in the nemo conv modules.
downsample_rate (`int`, *optional*, defaults to 1):
Downsample rate for the audio feature extractor.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
audio_token_id (`int`, *optional*, defaults to 200011):
The audio token id.
feature_layer (`int`, *optional*, defaults to -2):
The index of the layer of the encoder from which to extract audio features.
Example:
```python
>>> from transformers import Phi4MultimodalAudioConfig
>>> # Initializing a Phi4MultimodalAudioConfig with microsoft/Phi-4-multimodal-instruct style configuration
>>> configuration = Phi4MultimodalAudioConfig()
```"""
model_type = "phi4_multimodal_audio"
def __init__(
self,
hidden_size: int = 1024,
intermediate_size: int = 1536,
num_blocks: int = 24,
num_attention_heads: int = 16,
activation: str = "swish",
chunk_size: int = -1,
left_chunk: int = 18,
dropout_rate: float = 0.0,
ext_pw_out_channel: int = 1024,
depthwise_seperable_out_channel: int = 1024,
depthwise_multiplier: int = 1,
kernel_size: int = 3,
conv_activation: str = "swish",
input_size: int = 80,
conv_glu_type: str = "swish",
time_reduction: int = 8,
bias_max_distance: int = 1000,
bias_symmetric: bool = False,
nemo_activation: str = "relu",
nemo_conv_channels: int = 1024,
downsample_rate: int = 1,
initializer_range: float = 0.02,
audio_token_id: int = 200011,
feature_layer: int = -2,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.activation = activation
self.chunk_size = chunk_size
self.left_chunk = left_chunk
self.num_blocks = num_blocks
self.dropout_rate = dropout_rate
self.ext_pw_out_channel = ext_pw_out_channel
self.depthwise_seperable_out_channel = depthwise_seperable_out_channel
self.depthwise_multiplier = depthwise_multiplier
self.kernel_size = kernel_size
self.conv_activation = conv_activation
self.input_size = input_size
self.conv_glu_type = conv_glu_type
self.time_reduction = time_reduction
self.bias_max_distance = bias_max_distance
self.bias_symmetric = bias_symmetric
self.nemo_activation = nemo_activation
self.nemo_conv_channels = nemo_conv_channels
self.downsample_rate = downsample_rate
self.audio_token_id = audio_token_id
self.initializer_range = initializer_range
self.feature_layer = feature_layer
if time_reduction % 2 != 0:
raise ValueError("`time_reduction` should be a multiple of 2!")
length = input_size
for _ in range(int(math.log(time_reduction, 2))):
length = math.floor((length - 1) / 2 + 1)
self.nemo_final_size = length
class Phi4MultimodalConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Phi4MultimodalModel`]. It is used to instantiate a
Phi4Multimodal model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the
[microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 200064):
Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Phi3Model`].
hidden_size (`int`, *optional*, defaults to 3072):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 8192):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
resid_pdrop (`float`, *optional*, defaults to 0.0):
Dropout probability for mlp outputs.
embd_pdrop (`int`, *optional*, defaults to 0.0):
The dropout ratio for the embeddings.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio after computing the attention scores.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 131072):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon value used for the RMSNorm.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`dict`, *optional*):
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be `longrope` and
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
divided by the number of attention heads divided by 2.
partial_rotary_factor (`float`, *optional*, defaults to `1.0`):
Percentage of the query and keys which will have rotary embedding. Must be between 0.0 and 1.0.
bos_token_id (`int`, *optional*, defaults to 199999):
The id of the "beginning-of-sequence" token.
eos_token_id (`int` or `list[int]`, *optional*, defaults to `[199999, 200020]`):
The id of the "end-of-sequence" token.
pad_token_id (`int`, *optional*, defaults to 199999):
The id of the padding token.
original_max_position_embeddings (`int`, *optional*, defaults to 4096):
The maximum sequence length that this model was trained with. This is used to determine the size of the
original RoPE embeddings when using long scaling.
sliding_window (`int`, *optional*):
Sliding window attention window size. If `None`, no sliding window is applied.
vision_config (`Phi4MultimodalVisionConfig` or `dict`, *optional*):
The vision config for the underlying image embedding model. If not provided, will default to the configuration
used to instantiate a model similar in architecture as
[microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct).
audio_config (`Phi4MultimodalAudioConfig` or `dict`, *optional*):
The audio config for the underlying audio embedding model. If not provided, will default to the configuration
used to instantiate a model similar in architecture as
[microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct).
Example:
```python
>>> from transformers import Phi4MultimodalModel, Phi4MultimodalConfig
>>> # Initializing a Phi4Multimodal style configuration
>>> configuration = Phi4MultimodalConfig.from_pretrained("microsoft/Phi-4-multimodal-instruct")
>>> # Initializing a model from the configuration
>>> model = Phi4MultimodalModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "phi4_multimodal"
keys_to_ignore_at_inference = ["past_key_values"]
base_model_tp_plan = {
"layers.*.self_attn.qkv_proj": "colwise_rep", # we need to replicate here due to the slicing of qkv
"layers.*.self_attn.o_proj": "rowwise_rep", # we need to replicate here due to the slicing of qkv
"layers.*.mlp.gate_up_proj": "colwise_rep", # we need to replicate here due to the `chunk` operation
"layers.*.mlp.down_proj": "rowwise_rep", # we need to replicate here due to the `chunk` operation
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
sub_configs = {"audio_config": Phi4MultimodalAudioConfig, "vision_config": Phi4MultimodalVisionConfig}
def __init__(
self,
vocab_size=200064,
hidden_size=3072,
intermediate_size=8192,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=8,
resid_pdrop=0.0,
embd_pdrop=0.0,
attention_dropout=0.0,
hidden_act="silu",
max_position_embeddings=131072,
initializer_range=0.02,
rms_norm_eps=1e-5,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
partial_rotary_factor=1,
bos_token_id=199999,
eos_token_id=[199999, 200020],
pad_token_id=199999,
original_max_position_embeddings=4096,
sliding_window=None,
vision_config=None,
audio_config=None,
**kwargs,
):
super().__init__(
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
pad_token_id=pad_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attention_dropout = attention_dropout
self.hidden_act = hidden_act
self.max_position_embeddings = max_position_embeddings
self.original_max_position_embeddings = original_max_position_embeddings
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.partial_rotary_factor = partial_rotary_factor
self._rope_scaling_adjustment()
self._rope_scaling_validation()
self.sliding_window = sliding_window
if isinstance(vision_config, dict):
vision_config = Phi4MultimodalVisionConfig(**vision_config)
elif vision_config is None:
Phi4MultimodalVisionConfig()
self.vision_config = vision_config
if isinstance(audio_config, dict):
audio_config = Phi4MultimodalAudioConfig(**audio_config)
elif vision_config is None:
audio_config = Phi4MultimodalAudioConfig()
self.audio_config = audio_config
def _rope_scaling_adjustment(self):
"""
Adjust the `type` of the `rope_scaling` configuration for backward compatibility.
"""
if self.rope_scaling is None:
return
rope_scaling_type = self.rope_scaling.get("type", None)
# For backward compatibility if previous version used "su" or "yarn"
if rope_scaling_type is not None and rope_scaling_type in ["su", "yarn"]:
self.rope_scaling["type"] = "longrope"
def _rope_scaling_validation(self):
"""
Validate the `rope_scaling` configuration.
"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
raise ValueError(
"`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
f"got {self.rope_scaling}"
)
rope_scaling_type = self.rope_scaling.get("type", None)
rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
if rope_scaling_type is None or rope_scaling_type not in ["longrope"]:
raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}")
if not (
isinstance(rope_scaling_short_factor, list)
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
):
raise ValueError(
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
)
rotary_ndims = int(self.hidden_size // self.num_attention_heads * self.partial_rotary_factor)
if not len(rope_scaling_short_factor) == rotary_ndims // 2:
raise ValueError(
f"`rope_scaling`'s short_factor field must have length {rotary_ndims // 2}, got {len(rope_scaling_short_factor)}"
)
if not (
isinstance(rope_scaling_long_factor, list)
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
):
raise ValueError(
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
)
if not len(rope_scaling_long_factor) == rotary_ndims // 2:
raise ValueError(
f"`rope_scaling`'s long_factor field must have length {rotary_ndims // 2}, got {len(rope_scaling_long_factor)}"
)
__all__ = ["Phi4MultimodalVisionConfig", "Phi4MultimodalAudioConfig", "Phi4MultimodalConfig"]
Phi4MultimodalConfig.register_for_auto_class()