|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
|
|
|
|
class Phi4MultimodalVisionConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`Phi4MultimodalVisionModel`]. It is used to instantiate a |
|
Phi4Multimodal vision encoder according to the specified arguments, defining the model architecture. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of the vision encoder of |
|
[microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
hidden_size (`int`, *optional*, defaults to 1152): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
intermediate_size (`int`, *optional*, defaults to 4304): |
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
num_hidden_layers (`int`, *optional*, defaults to 27): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 16): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
num_channels (`int`, *optional*, defaults to 3): |
|
Number of channels in the input images. |
|
image_size (`int`, *optional*, defaults to 448): |
|
The size (resolution) of each image. |
|
patch_size (`int`, *optional*, defaults to 14): |
|
The size (resolution) of each patch. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-06): |
|
The epsilon used by the layer normalization layers. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
crop_size (`int`, *optional*, defaults to 448): |
|
Crop size for the input images. |
|
image_token_id (`int`, *optional*, defaults to 200010): |
|
The image token id. |
|
feature_layer (`int`, *optional*, defaults to -2): |
|
The index of the layer of the encoder from which to extract image features. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import Phi4MultimodalVisionConfig |
|
|
|
>>> # Initializing a Phi4MultimodalVisionConfig with microsoft/Phi-4-multimodal-instruct style configuration |
|
>>> configuration = Phi4MultimodalVisionConfig() |
|
```""" |
|
|
|
model_type = "phi4_multimodal_vision" |
|
base_config_key = "vision_config" |
|
|
|
def __init__( |
|
self, |
|
hidden_size=1152, |
|
intermediate_size=4304, |
|
num_hidden_layers=27, |
|
num_attention_heads=16, |
|
num_channels=3, |
|
image_size=448, |
|
patch_size=14, |
|
hidden_act="gelu_pytorch_tanh", |
|
layer_norm_eps=1e-6, |
|
attention_dropout=0.0, |
|
crop_size: int = 448, |
|
image_token_id: int = 200010, |
|
feature_layer: int = -2, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.num_channels = num_channels |
|
self.patch_size = patch_size |
|
self.image_size = image_size |
|
self.attention_dropout = attention_dropout |
|
self.layer_norm_eps = layer_norm_eps |
|
self.hidden_act = hidden_act |
|
self.crop_size = crop_size |
|
self.image_token_id = image_token_id |
|
self.feature_layer = feature_layer |
|
|
|
|
|
class Phi4MultimodalAudioConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`Phi4MultimodalAudioModel`]. It is used to instantiate a |
|
Phi4Multimodal audio encoder according to the specified arguments, defining the model architecture. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of the audio encoder of |
|
[microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
hidden_size (`int`, *optional*, defaults to 1024): |
|
Dimensionality of the encoder layers. |
|
intermediate_size (`int`, *optional*, defaults to 1536): |
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
num_blocks (`int`, *optional*, defaults to 24): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 16): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
activation (`str`, *optional*, defaults to `"swish"`): |
|
The non-linear activation function in the MLPs. |
|
chunk_size (`int`, *optional*, defaults to -1): |
|
The chunk size to create the masks. |
|
left_chunk (`int`, *optional*, defaults to 18): |
|
The left chunk to create the masks. |
|
dropout_rate (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio. |
|
ext_pw_out_channel (`int`, *optional*, defaults to 1024): |
|
Number of out channels in the point-wise conv modules. |
|
depthwise_seperable_out_channel (`int`, *optional*, defaults to 1024): |
|
Number of out channels in the depth-wise separable conv modules. |
|
depthwise_multiplier (`int`, *optional*, defaults to 1): |
|
Input size multiplier for the depth-wise separable conv modules. |
|
kernel_size (`int`, *optional*, defaults to 3): |
|
Kernel size for the depth-wise separable conv modules. |
|
conv_activation (`str`, *optional*, defaults to `"swish"`): |
|
The non-linear activation function in the conv modules. |
|
input_size (`int`, *optional*, defaults to 80): |
|
Input size for the audio model. |
|
conv_glu_type (`str`, *optional*, defaults to `"swish"`): |
|
The non-linear activation function in the point-wise conv modules. |
|
time_reduction (`int`, *optional*, defaults to 8): |
|
Time reduction (subsampling factor). |
|
bias_max_distance (`int`, *optional*, defaults to 1000): |
|
Max distance for the relative attention bias module. |
|
bias_symmetric (`bool`, *optional*, defaults to `False`): |
|
Whether the relative attention bias should be symmetric or not. |
|
nemo_activation (`str`, *optional*, defaults to `"relu"`): |
|
The non-linear activation function in the nemo conv modules. |
|
nemo_conv_channels (`int`, *optional*, defaults to 1024): |
|
Number of channels in the nemo conv modules. |
|
downsample_rate (`int`, *optional*, defaults to 1): |
|
Downsample rate for the audio feature extractor. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
audio_token_id (`int`, *optional*, defaults to 200011): |
|
The audio token id. |
|
feature_layer (`int`, *optional*, defaults to -2): |
|
The index of the layer of the encoder from which to extract audio features. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import Phi4MultimodalAudioConfig |
|
|
|
>>> # Initializing a Phi4MultimodalAudioConfig with microsoft/Phi-4-multimodal-instruct style configuration |
|
>>> configuration = Phi4MultimodalAudioConfig() |
|
```""" |
|
|
|
model_type = "phi4_multimodal_audio" |
|
|
|
def __init__( |
|
self, |
|
hidden_size: int = 1024, |
|
intermediate_size: int = 1536, |
|
num_blocks: int = 24, |
|
num_attention_heads: int = 16, |
|
activation: str = "swish", |
|
chunk_size: int = -1, |
|
left_chunk: int = 18, |
|
dropout_rate: float = 0.0, |
|
ext_pw_out_channel: int = 1024, |
|
depthwise_seperable_out_channel: int = 1024, |
|
depthwise_multiplier: int = 1, |
|
kernel_size: int = 3, |
|
conv_activation: str = "swish", |
|
input_size: int = 80, |
|
conv_glu_type: str = "swish", |
|
time_reduction: int = 8, |
|
bias_max_distance: int = 1000, |
|
bias_symmetric: bool = False, |
|
nemo_activation: str = "relu", |
|
nemo_conv_channels: int = 1024, |
|
downsample_rate: int = 1, |
|
initializer_range: float = 0.02, |
|
audio_token_id: int = 200011, |
|
feature_layer: int = -2, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
self.hidden_size = hidden_size |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.activation = activation |
|
self.chunk_size = chunk_size |
|
self.left_chunk = left_chunk |
|
self.num_blocks = num_blocks |
|
self.dropout_rate = dropout_rate |
|
self.ext_pw_out_channel = ext_pw_out_channel |
|
self.depthwise_seperable_out_channel = depthwise_seperable_out_channel |
|
self.depthwise_multiplier = depthwise_multiplier |
|
self.kernel_size = kernel_size |
|
self.conv_activation = conv_activation |
|
self.input_size = input_size |
|
self.conv_glu_type = conv_glu_type |
|
self.time_reduction = time_reduction |
|
self.bias_max_distance = bias_max_distance |
|
self.bias_symmetric = bias_symmetric |
|
self.nemo_activation = nemo_activation |
|
self.nemo_conv_channels = nemo_conv_channels |
|
self.downsample_rate = downsample_rate |
|
self.audio_token_id = audio_token_id |
|
self.initializer_range = initializer_range |
|
self.feature_layer = feature_layer |
|
|
|
if time_reduction % 2 != 0: |
|
raise ValueError("`time_reduction` should be a multiple of 2!") |
|
length = input_size |
|
for _ in range(int(math.log(time_reduction, 2))): |
|
length = math.floor((length - 1) / 2 + 1) |
|
self.nemo_final_size = length |
|
|
|
|
|
class Phi4MultimodalConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`Phi4MultimodalModel`]. It is used to instantiate a |
|
Phi4Multimodal model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the |
|
[microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 200064): |
|
Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`Phi3Model`]. |
|
hidden_size (`int`, *optional*, defaults to 3072): |
|
Dimension of the hidden representations. |
|
intermediate_size (`int`, *optional*, defaults to 8192): |
|
Dimension of the MLP representations. |
|
num_hidden_layers (`int`, *optional*, defaults to 32): |
|
Number of hidden layers in the Transformer decoder. |
|
num_attention_heads (`int`, *optional*, defaults to 32): |
|
Number of attention heads for each attention layer in the Transformer decoder. |
|
num_key_value_heads (`int`, *optional*, defaults to 8): |
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If |
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if |
|
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When |
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed |
|
by meanpooling all the original heads within that group. For more details checkout [this |
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to |
|
`num_attention_heads`. |
|
resid_pdrop (`float`, *optional*, defaults to 0.0): |
|
Dropout probability for mlp outputs. |
|
embd_pdrop (`int`, *optional*, defaults to 0.0): |
|
The dropout ratio for the embeddings. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio after computing the attention scores. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): |
|
The non-linear activation function (function or string) in the decoder. |
|
max_position_embeddings (`int`, *optional*, defaults to 131072): |
|
The maximum sequence length that this model might ever be used with. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
rms_norm_eps (`float`, *optional*, defaults to 1e-05): |
|
The epsilon value used for the RMSNorm. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not. |
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
Whether to tie weight embeddings |
|
rope_theta (`float`, *optional*, defaults to 10000.0): |
|
The base period of the RoPE embeddings. |
|
rope_scaling (`dict`, *optional*): |
|
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must |
|
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be `longrope` and |
|
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size |
|
divided by the number of attention heads divided by 2. |
|
partial_rotary_factor (`float`, *optional*, defaults to `1.0`): |
|
Percentage of the query and keys which will have rotary embedding. Must be between 0.0 and 1.0. |
|
bos_token_id (`int`, *optional*, defaults to 199999): |
|
The id of the "beginning-of-sequence" token. |
|
eos_token_id (`int` or `list[int]`, *optional*, defaults to `[199999, 200020]`): |
|
The id of the "end-of-sequence" token. |
|
pad_token_id (`int`, *optional*, defaults to 199999): |
|
The id of the padding token. |
|
original_max_position_embeddings (`int`, *optional*, defaults to 4096): |
|
The maximum sequence length that this model was trained with. This is used to determine the size of the |
|
original RoPE embeddings when using long scaling. |
|
sliding_window (`int`, *optional*): |
|
Sliding window attention window size. If `None`, no sliding window is applied. |
|
vision_config (`Phi4MultimodalVisionConfig` or `dict`, *optional*): |
|
The vision config for the underlying image embedding model. If not provided, will default to the configuration |
|
used to instantiate a model similar in architecture as |
|
[microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct). |
|
audio_config (`Phi4MultimodalAudioConfig` or `dict`, *optional*): |
|
The audio config for the underlying audio embedding model. If not provided, will default to the configuration |
|
used to instantiate a model similar in architecture as |
|
[microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct). |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import Phi4MultimodalModel, Phi4MultimodalConfig |
|
|
|
>>> # Initializing a Phi4Multimodal style configuration |
|
>>> configuration = Phi4MultimodalConfig.from_pretrained("microsoft/Phi-4-multimodal-instruct") |
|
|
|
>>> # Initializing a model from the configuration |
|
>>> model = Phi4MultimodalModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "phi4_multimodal" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
base_model_tp_plan = { |
|
"layers.*.self_attn.qkv_proj": "colwise_rep", |
|
"layers.*.self_attn.o_proj": "rowwise_rep", |
|
"layers.*.mlp.gate_up_proj": "colwise_rep", |
|
"layers.*.mlp.down_proj": "rowwise_rep", |
|
} |
|
base_model_pp_plan = { |
|
"embed_tokens": (["input_ids"], ["inputs_embeds"]), |
|
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]), |
|
"norm": (["hidden_states"], ["hidden_states"]), |
|
} |
|
|
|
sub_configs = {"audio_config": Phi4MultimodalAudioConfig, "vision_config": Phi4MultimodalVisionConfig} |
|
|
|
def __init__( |
|
self, |
|
vocab_size=200064, |
|
hidden_size=3072, |
|
intermediate_size=8192, |
|
num_hidden_layers=32, |
|
num_attention_heads=32, |
|
num_key_value_heads=8, |
|
resid_pdrop=0.0, |
|
embd_pdrop=0.0, |
|
attention_dropout=0.0, |
|
hidden_act="silu", |
|
max_position_embeddings=131072, |
|
initializer_range=0.02, |
|
rms_norm_eps=1e-5, |
|
use_cache=True, |
|
tie_word_embeddings=False, |
|
rope_theta=10000.0, |
|
rope_scaling=None, |
|
partial_rotary_factor=1, |
|
bos_token_id=199999, |
|
eos_token_id=[199999, 200020], |
|
pad_token_id=199999, |
|
original_max_position_embeddings=4096, |
|
sliding_window=None, |
|
vision_config=None, |
|
audio_config=None, |
|
**kwargs, |
|
): |
|
super().__init__( |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
pad_token_id=pad_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
|
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_attention_heads |
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
self.resid_pdrop = resid_pdrop |
|
self.embd_pdrop = embd_pdrop |
|
self.attention_dropout = attention_dropout |
|
self.hidden_act = hidden_act |
|
self.max_position_embeddings = max_position_embeddings |
|
self.original_max_position_embeddings = original_max_position_embeddings |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
self.rope_scaling = rope_scaling |
|
self.partial_rotary_factor = partial_rotary_factor |
|
self._rope_scaling_adjustment() |
|
self._rope_scaling_validation() |
|
self.sliding_window = sliding_window |
|
|
|
if isinstance(vision_config, dict): |
|
vision_config = Phi4MultimodalVisionConfig(**vision_config) |
|
elif vision_config is None: |
|
Phi4MultimodalVisionConfig() |
|
self.vision_config = vision_config |
|
|
|
if isinstance(audio_config, dict): |
|
audio_config = Phi4MultimodalAudioConfig(**audio_config) |
|
elif vision_config is None: |
|
audio_config = Phi4MultimodalAudioConfig() |
|
self.audio_config = audio_config |
|
|
|
def _rope_scaling_adjustment(self): |
|
""" |
|
Adjust the `type` of the `rope_scaling` configuration for backward compatibility. |
|
""" |
|
if self.rope_scaling is None: |
|
return |
|
|
|
rope_scaling_type = self.rope_scaling.get("type", None) |
|
|
|
|
|
if rope_scaling_type is not None and rope_scaling_type in ["su", "yarn"]: |
|
self.rope_scaling["type"] = "longrope" |
|
|
|
def _rope_scaling_validation(self): |
|
""" |
|
Validate the `rope_scaling` configuration. |
|
""" |
|
if self.rope_scaling is None: |
|
return |
|
|
|
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3: |
|
raise ValueError( |
|
"`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, " |
|
f"got {self.rope_scaling}" |
|
) |
|
rope_scaling_type = self.rope_scaling.get("type", None) |
|
rope_scaling_short_factor = self.rope_scaling.get("short_factor", None) |
|
rope_scaling_long_factor = self.rope_scaling.get("long_factor", None) |
|
if rope_scaling_type is None or rope_scaling_type not in ["longrope"]: |
|
raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}") |
|
if not ( |
|
isinstance(rope_scaling_short_factor, list) |
|
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor) |
|
): |
|
raise ValueError( |
|
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}" |
|
) |
|
rotary_ndims = int(self.hidden_size // self.num_attention_heads * self.partial_rotary_factor) |
|
if not len(rope_scaling_short_factor) == rotary_ndims // 2: |
|
raise ValueError( |
|
f"`rope_scaling`'s short_factor field must have length {rotary_ndims // 2}, got {len(rope_scaling_short_factor)}" |
|
) |
|
if not ( |
|
isinstance(rope_scaling_long_factor, list) |
|
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor) |
|
): |
|
raise ValueError( |
|
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}" |
|
) |
|
if not len(rope_scaling_long_factor) == rotary_ndims // 2: |
|
raise ValueError( |
|
f"`rope_scaling`'s long_factor field must have length {rotary_ndims // 2}, got {len(rope_scaling_long_factor)}" |
|
) |
|
|
|
|
|
__all__ = ["Phi4MultimodalVisionConfig", "Phi4MultimodalAudioConfig", "Phi4MultimodalConfig"] |
|
|
|
Phi4MultimodalConfig.register_for_auto_class() |