File size: 24,422 Bytes
698b586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
#                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
#           This file was automatically generated from src/transformers/models/phi4_multimodal/modular_phi4_multimodal.py.
#               Do NOT edit this file manually as any edits will be overwritten by the generation of
#             the file from the modular. If any change should be done, please apply the change to the
#                          modular_phi4_multimodal.py file directly. One of our CI enforces this.
#                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# Copyright 2025 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math

from transformers.configuration_utils import PretrainedConfig


class Phi4MultimodalVisionConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`Phi4MultimodalVisionModel`]. It is used to instantiate a
    Phi4Multimodal vision encoder according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the vision encoder of
    [microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 1152):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 4304):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 27):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_channels (`int`, *optional*, defaults to 3):
            Number of channels in the input images.
        image_size (`int`, *optional*, defaults to 448):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 14):
            The size (resolution) of each patch.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        crop_size (`int`, *optional*, defaults to 448):
            Crop size for the input images.
        image_token_id (`int`, *optional*, defaults to 200010):
            The image token id.
        feature_layer (`int`, *optional*, defaults to -2):
            The index of the layer of the encoder from which to extract image features.

    Example:

    ```python
    >>> from transformers import Phi4MultimodalVisionConfig

    >>> # Initializing a Phi4MultimodalVisionConfig with microsoft/Phi-4-multimodal-instruct style configuration
    >>> configuration = Phi4MultimodalVisionConfig()
    ```"""

    model_type = "phi4_multimodal_vision"
    base_config_key = "vision_config"

    def __init__(
        self,
        hidden_size=1152,
        intermediate_size=4304,
        num_hidden_layers=27,
        num_attention_heads=16,
        num_channels=3,
        image_size=448,
        patch_size=14,
        hidden_act="gelu_pytorch_tanh",
        layer_norm_eps=1e-6,
        attention_dropout=0.0,
        crop_size: int = 448,
        image_token_id: int = 200010,
        feature_layer: int = -2,
        **kwargs,
    ):
        super().__init__(**kwargs)

        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_channels = num_channels
        self.patch_size = patch_size
        self.image_size = image_size
        self.attention_dropout = attention_dropout
        self.layer_norm_eps = layer_norm_eps
        self.hidden_act = hidden_act
        self.crop_size = crop_size
        self.image_token_id = image_token_id
        self.feature_layer = feature_layer


class Phi4MultimodalAudioConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`Phi4MultimodalAudioModel`]. It is used to instantiate a
    Phi4Multimodal audio encoder according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the audio encoder of
    [microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 1024):
            Dimensionality of the encoder layers.
        intermediate_size (`int`, *optional*, defaults to 1536):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_blocks (`int`, *optional*, defaults to 24):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        activation (`str`, *optional*, defaults to `"swish"`):
            The non-linear activation function in the MLPs.
        chunk_size (`int`, *optional*, defaults to -1):
            The chunk size to create the masks.
        left_chunk (`int`, *optional*, defaults to 18):
            The left chunk to create the masks.
        dropout_rate (`float`, *optional*, defaults to 0.0):
            The dropout ratio.
        ext_pw_out_channel (`int`, *optional*, defaults to 1024):
            Number of out channels in the point-wise conv modules.
        depthwise_seperable_out_channel (`int`, *optional*, defaults to 1024):
            Number of out channels in the depth-wise separable conv modules.
        depthwise_multiplier (`int`, *optional*, defaults to 1):
            Input size multiplier for the depth-wise separable conv modules.
        kernel_size (`int`, *optional*, defaults to 3):
            Kernel size for the depth-wise separable conv modules.
        conv_activation (`str`, *optional*, defaults to `"swish"`):
            The non-linear activation function in the conv modules.
        input_size (`int`, *optional*, defaults to 80):
            Input size for the audio model.
        conv_glu_type (`str`, *optional*, defaults to `"swish"`):
            The non-linear activation function in the point-wise conv modules.
        time_reduction (`int`, *optional*, defaults to 8):
            Time reduction (subsampling factor).
        bias_max_distance (`int`, *optional*, defaults to 1000):
            Max distance for the relative attention bias module.
        bias_symmetric (`bool`, *optional*, defaults to `False`):
            Whether the relative attention bias should be symmetric or not.
        nemo_activation (`str`, *optional*, defaults to `"relu"`):
            The non-linear activation function in the nemo conv modules.
        nemo_conv_channels (`int`, *optional*, defaults to 1024):
            Number of channels in the nemo conv modules.
        downsample_rate (`int`, *optional*, defaults to 1):
            Downsample rate for the audio feature extractor.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        audio_token_id (`int`, *optional*, defaults to 200011):
            The audio token id.
        feature_layer (`int`, *optional*, defaults to -2):
            The index of the layer of the encoder from which to extract audio features.

    Example:

    ```python
    >>> from transformers import Phi4MultimodalAudioConfig

    >>> # Initializing a Phi4MultimodalAudioConfig with microsoft/Phi-4-multimodal-instruct style configuration
    >>> configuration = Phi4MultimodalAudioConfig()
    ```"""

    model_type = "phi4_multimodal_audio"

    def __init__(
        self,
        hidden_size: int = 1024,
        intermediate_size: int = 1536,
        num_blocks: int = 24,
        num_attention_heads: int = 16,
        activation: str = "swish",
        chunk_size: int = -1,
        left_chunk: int = 18,
        dropout_rate: float = 0.0,
        ext_pw_out_channel: int = 1024,
        depthwise_seperable_out_channel: int = 1024,
        depthwise_multiplier: int = 1,
        kernel_size: int = 3,
        conv_activation: str = "swish",
        input_size: int = 80,
        conv_glu_type: str = "swish",
        time_reduction: int = 8,
        bias_max_distance: int = 1000,
        bias_symmetric: bool = False,
        nemo_activation: str = "relu",
        nemo_conv_channels: int = 1024,
        downsample_rate: int = 1,
        initializer_range: float = 0.02,
        audio_token_id: int = 200011,
        feature_layer: int = -2,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.hidden_size = hidden_size
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.activation = activation
        self.chunk_size = chunk_size
        self.left_chunk = left_chunk
        self.num_blocks = num_blocks
        self.dropout_rate = dropout_rate
        self.ext_pw_out_channel = ext_pw_out_channel
        self.depthwise_seperable_out_channel = depthwise_seperable_out_channel
        self.depthwise_multiplier = depthwise_multiplier
        self.kernel_size = kernel_size
        self.conv_activation = conv_activation
        self.input_size = input_size
        self.conv_glu_type = conv_glu_type
        self.time_reduction = time_reduction
        self.bias_max_distance = bias_max_distance
        self.bias_symmetric = bias_symmetric
        self.nemo_activation = nemo_activation
        self.nemo_conv_channels = nemo_conv_channels
        self.downsample_rate = downsample_rate
        self.audio_token_id = audio_token_id
        self.initializer_range = initializer_range
        self.feature_layer = feature_layer

        if time_reduction % 2 != 0:
            raise ValueError("`time_reduction` should be a multiple of 2!")
        length = input_size
        for _ in range(int(math.log(time_reduction, 2))):
            length = math.floor((length - 1) / 2 + 1)
        self.nemo_final_size = length


class Phi4MultimodalConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`Phi4MultimodalModel`]. It is used to instantiate a
    Phi4Multimodal model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the
    [microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 200064):
            Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`Phi3Model`].
        hidden_size (`int`, *optional*, defaults to 3072):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 8192):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*, defaults to 8):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
            `num_attention_heads`.
        resid_pdrop (`float`, *optional*, defaults to 0.0):
            Dropout probability for mlp outputs.
        embd_pdrop (`int`, *optional*, defaults to 0.0):
            The dropout ratio for the embeddings.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio after computing the attention scores.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 131072):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon value used for the RMSNorm.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`dict`, *optional*):
            The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
            contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be `longrope` and
            the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
            divided by the number of attention heads divided by 2.
        partial_rotary_factor (`float`, *optional*, defaults to `1.0`):
            Percentage of the query and keys which will have rotary embedding. Must be between 0.0 and 1.0.
        bos_token_id (`int`, *optional*, defaults to 199999):
            The id of the "beginning-of-sequence" token.
        eos_token_id (`int` or `list[int]`, *optional*, defaults to `[199999, 200020]`):
            The id of the "end-of-sequence" token.
        pad_token_id (`int`, *optional*, defaults to 199999):
            The id of the padding token.
        original_max_position_embeddings (`int`, *optional*, defaults to 4096):
            The maximum sequence length that this model was trained with. This is used to determine the size of the
            original RoPE embeddings when using long scaling.
        sliding_window (`int`, *optional*):
            Sliding window attention window size. If `None`, no sliding window is applied.
        vision_config (`Phi4MultimodalVisionConfig` or `dict`, *optional*):
            The vision config for the underlying image embedding model. If not provided, will default to the configuration
            used to instantiate a model similar in architecture as
            [microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct).
        audio_config (`Phi4MultimodalAudioConfig` or `dict`, *optional*):
            The audio config for the underlying audio embedding model. If not provided, will default to the configuration
            used to instantiate a model similar in architecture as
            [microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct).

    Example:

    ```python
    >>> from transformers import Phi4MultimodalModel, Phi4MultimodalConfig

    >>> # Initializing a Phi4Multimodal style configuration
    >>> configuration = Phi4MultimodalConfig.from_pretrained("microsoft/Phi-4-multimodal-instruct")

    >>> # Initializing a model from the configuration
    >>> model = Phi4MultimodalModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "phi4_multimodal"
    keys_to_ignore_at_inference = ["past_key_values"]
    base_model_tp_plan = {
        "layers.*.self_attn.qkv_proj": "colwise_rep",  # we need to replicate here due to the slicing of qkv
        "layers.*.self_attn.o_proj": "rowwise_rep",  # we need to replicate here due to the slicing of qkv
        "layers.*.mlp.gate_up_proj": "colwise_rep",  # we need to replicate here due to the `chunk` operation
        "layers.*.mlp.down_proj": "rowwise_rep",  # we need to replicate here due to the `chunk` operation
    }
    base_model_pp_plan = {
        "embed_tokens": (["input_ids"], ["inputs_embeds"]),
        "layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
        "norm": (["hidden_states"], ["hidden_states"]),
    }

    sub_configs = {"audio_config": Phi4MultimodalAudioConfig, "vision_config": Phi4MultimodalVisionConfig}

    def __init__(
        self,
        vocab_size=200064,
        hidden_size=3072,
        intermediate_size=8192,
        num_hidden_layers=32,
        num_attention_heads=32,
        num_key_value_heads=8,
        resid_pdrop=0.0,
        embd_pdrop=0.0,
        attention_dropout=0.0,
        hidden_act="silu",
        max_position_embeddings=131072,
        initializer_range=0.02,
        rms_norm_eps=1e-5,
        use_cache=True,
        tie_word_embeddings=False,
        rope_theta=10000.0,
        rope_scaling=None,
        partial_rotary_factor=1,
        bos_token_id=199999,
        eos_token_id=[199999, 200020],
        pad_token_id=199999,
        original_max_position_embeddings=4096,
        sliding_window=None,
        vision_config=None,
        audio_config=None,
        **kwargs,
    ):
        super().__init__(
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            pad_token_id=pad_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads

        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads
        self.resid_pdrop = resid_pdrop
        self.embd_pdrop = embd_pdrop
        self.attention_dropout = attention_dropout
        self.hidden_act = hidden_act
        self.max_position_embeddings = max_position_embeddings
        self.original_max_position_embeddings = original_max_position_embeddings
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.rope_scaling = rope_scaling
        self.partial_rotary_factor = partial_rotary_factor
        self._rope_scaling_adjustment()
        self._rope_scaling_validation()
        self.sliding_window = sliding_window

        if isinstance(vision_config, dict):
            vision_config = Phi4MultimodalVisionConfig(**vision_config)
        elif vision_config is None:
            Phi4MultimodalVisionConfig()
        self.vision_config = vision_config

        if isinstance(audio_config, dict):
            audio_config = Phi4MultimodalAudioConfig(**audio_config)
        elif vision_config is None:
            audio_config = Phi4MultimodalAudioConfig()
        self.audio_config = audio_config

    def _rope_scaling_adjustment(self):
        """
        Adjust the `type` of the `rope_scaling` configuration for backward compatibility.
        """
        if self.rope_scaling is None:
            return

        rope_scaling_type = self.rope_scaling.get("type", None)

        # For backward compatibility if previous version used "su" or "yarn"
        if rope_scaling_type is not None and rope_scaling_type in ["su", "yarn"]:
            self.rope_scaling["type"] = "longrope"

    def _rope_scaling_validation(self):
        """
        Validate the `rope_scaling` configuration.
        """
        if self.rope_scaling is None:
            return

        if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
            raise ValueError(
                "`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
                f"got {self.rope_scaling}"
            )
        rope_scaling_type = self.rope_scaling.get("type", None)
        rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
        rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
        if rope_scaling_type is None or rope_scaling_type not in ["longrope"]:
            raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}")
        if not (
            isinstance(rope_scaling_short_factor, list)
            and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
        ):
            raise ValueError(
                f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
            )
        rotary_ndims = int(self.hidden_size // self.num_attention_heads * self.partial_rotary_factor)
        if not len(rope_scaling_short_factor) == rotary_ndims // 2:
            raise ValueError(
                f"`rope_scaling`'s short_factor field must have length {rotary_ndims // 2}, got {len(rope_scaling_short_factor)}"
            )
        if not (
            isinstance(rope_scaling_long_factor, list)
            and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
        ):
            raise ValueError(
                f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
            )
        if not len(rope_scaling_long_factor) == rotary_ndims // 2:
            raise ValueError(
                f"`rope_scaling`'s long_factor field must have length {rotary_ndims // 2}, got {len(rope_scaling_long_factor)}"
            )


__all__ = ["Phi4MultimodalVisionConfig", "Phi4MultimodalAudioConfig", "Phi4MultimodalConfig"]

Phi4MultimodalConfig.register_for_auto_class()