ModernBERT Embed base Legal Matryoshka
This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/modernbert-embed-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("manishh16/modernbert-embed-base-legal-matryoshka-2")
# Run inference
sentences = [
'protests pursuant to 28 U.S.C. § 1491(b). See 28 U.S.C. § 1491(b). Section 1491(b)(1) grants the \n17 \n \ncourt jurisdiction over protests filed “by an interested party objecting to a solicitation by a Federal \nagency for bids or proposals for a proposed contract . . . or any alleged violation of statute or',
'Under which U.S. Code section are the protests filed?',
"Which agency's declaration is mentioned?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 768 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.592 |
cosine_accuracy@3 | 0.6352 |
cosine_accuracy@5 | 0.7032 |
cosine_accuracy@10 | 0.7666 |
cosine_precision@1 | 0.592 |
cosine_precision@3 | 0.5683 |
cosine_precision@5 | 0.4263 |
cosine_precision@10 | 0.2408 |
cosine_recall@1 | 0.2012 |
cosine_recall@3 | 0.547 |
cosine_recall@5 | 0.6664 |
cosine_recall@10 | 0.7508 |
cosine_ndcg@10 | 0.6774 |
cosine_mrr@10 | 0.6317 |
cosine_map@100 | 0.6707 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 512 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5858 |
cosine_accuracy@3 | 0.6167 |
cosine_accuracy@5 | 0.6909 |
cosine_accuracy@10 | 0.7666 |
cosine_precision@1 | 0.5858 |
cosine_precision@3 | 0.5574 |
cosine_precision@5 | 0.4176 |
cosine_precision@10 | 0.2417 |
cosine_recall@1 | 0.1984 |
cosine_recall@3 | 0.5353 |
cosine_recall@5 | 0.6515 |
cosine_recall@10 | 0.7518 |
cosine_ndcg@10 | 0.6722 |
cosine_mrr@10 | 0.6236 |
cosine_map@100 | 0.662 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 256 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5672 |
cosine_accuracy@3 | 0.5873 |
cosine_accuracy@5 | 0.6646 |
cosine_accuracy@10 | 0.7311 |
cosine_precision@1 | 0.5672 |
cosine_precision@3 | 0.5384 |
cosine_precision@5 | 0.4009 |
cosine_precision@10 | 0.2308 |
cosine_recall@1 | 0.1906 |
cosine_recall@3 | 0.5152 |
cosine_recall@5 | 0.6264 |
cosine_recall@10 | 0.7205 |
cosine_ndcg@10 | 0.6454 |
cosine_mrr@10 | 0.6009 |
cosine_map@100 | 0.6377 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 128 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.4992 |
cosine_accuracy@3 | 0.5301 |
cosine_accuracy@5 | 0.6136 |
cosine_accuracy@10 | 0.6785 |
cosine_precision@1 | 0.4992 |
cosine_precision@3 | 0.4745 |
cosine_precision@5 | 0.3654 |
cosine_precision@10 | 0.2159 |
cosine_recall@1 | 0.1695 |
cosine_recall@3 | 0.4581 |
cosine_recall@5 | 0.5706 |
cosine_recall@10 | 0.6683 |
cosine_ndcg@10 | 0.5892 |
cosine_mrr@10 | 0.5386 |
cosine_map@100 | 0.5783 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 64 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.3632 |
cosine_accuracy@3 | 0.4019 |
cosine_accuracy@5 | 0.473 |
cosine_accuracy@10 | 0.527 |
cosine_precision@1 | 0.3632 |
cosine_precision@3 | 0.3514 |
cosine_precision@5 | 0.2782 |
cosine_precision@10 | 0.1651 |
cosine_recall@1 | 0.1236 |
cosine_recall@3 | 0.3391 |
cosine_recall@5 | 0.4364 |
cosine_recall@10 | 0.5143 |
cosine_ndcg@10 | 0.4444 |
cosine_mrr@10 | 0.4003 |
cosine_map@100 | 0.4462 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 5,822 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 26 tokens
- mean: 96.76 tokens
- max: 156 tokens
- min: 8 tokens
- mean: 16.59 tokens
- max: 49 tokens
- Samples:
positive anchor properly authenticated. See id. at 367, 19 A.3d at 429 (Harrell, J., dissenting).
Four years later, in Sublet, 442 Md. at 637-38, 113 A.3d at 697-98, we adopted the
reasonable juror test for social media evidence and applied it in the three cases that were
consolidated for purposes of the opinion: Sublet v. State, Harris v. State, and Monge-How many years after the dissent did the adoption of the reasonable juror test occur?
to (1) a public-interest fee waiver, (2) the expedited processing of a request, or (3) the release of
information that implicates personal privacy, all are personal to a requester and thus cannot be
assigned. See, e.g., RTC Commercial Loan Trust 1995-NP1A v. Winthrop Mgmt., 923 F. Supp.
83, 88 (E.D. Va. 1996) (holding that “certain rights are purely personal and cannot be assigned”).What type of fee waiver is mentioned as being personal to a requester?
‘IRO’] staff that reviews Agency records and makes public release determinations with an eye
toward evaluating directorate-specific equities.” Id. ¶ 4. Ms. Meeks also explains that “records
frequently involve the equities of multiple directorates,” and “[w]hen records implicate the
operational interests of multiple directorates, the reviews are conducted by the relevant IROsWho conducts the reviews when the records implicate the operational interests of multiple directorates?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.8791 | 10 | 91.6964 | - | - | - | - | - |
1.0 | 12 | - | 0.6483 | 0.6445 | 0.6004 | 0.5232 | 0.4001 |
1.7033 | 20 | 39.6429 | - | - | - | - | - |
2.0 | 24 | - | 0.6764 | 0.6716 | 0.6361 | 0.5736 | 0.4374 |
2.5275 | 30 | 30.1905 | - | - | - | - | - |
3.0 | 36 | - | 0.6768 | 0.6699 | 0.6441 | 0.5869 | 0.4416 |
3.3516 | 40 | 26.8879 | - | - | - | - | - |
3.7033 | 44 | - | 0.6774 | 0.6722 | 0.6454 | 0.5892 | 0.4444 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.0.1
- Transformers: 4.50.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for manishh16/modernbert-embed-base-legal-matryoshka-2
Base model
answerdotai/ModernBERT-base
Finetuned
nomic-ai/modernbert-embed-base
Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.592
- Cosine Accuracy@3 on dim 768self-reported0.635
- Cosine Accuracy@5 on dim 768self-reported0.703
- Cosine Accuracy@10 on dim 768self-reported0.767
- Cosine Precision@1 on dim 768self-reported0.592
- Cosine Precision@3 on dim 768self-reported0.568
- Cosine Precision@5 on dim 768self-reported0.426
- Cosine Precision@10 on dim 768self-reported0.241
- Cosine Recall@1 on dim 768self-reported0.201
- Cosine Recall@3 on dim 768self-reported0.547