File size: 81,275 Bytes
b9a978d 293923a b9a978d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:412178
- loss:MultipleNegativesRankingLoss
base_model: answerdotai/ModernBERT-base
widget:
- source_sentence: "Clip off all parts from all bounding boxes that are outside of\
\ the image.\n\n Returns\n -------\n imgaug.BoundingBoxesOnImage\n\
\ Bounding boxes, clipped to fall within the image dimensions."
sentences:
- "def model_best(y1, y2, samples=1000, progressbar=True):\n \"\"\"\n Bayesian\
\ Estimation Supersedes the T-Test\n\n This model runs a Bayesian hypothesis\
\ comparing if y1 and y2 come\n from the same distribution. Returns are assumed\
\ to be T-distributed.\n\n In addition, computes annual volatility and Sharpe\
\ of in and\n out-of-sample periods.\n\n This model replicates the example\
\ used in:\n Kruschke, John. (2012) Bayesian estimation supersedes the t\n\
\ test. Journal of Experimental Psychology: General.\n\n Parameters\n \
\ ----------\n y1 : array-like\n Array of returns (e.g. in-sample)\n\
\ y2 : array-like\n Array of returns (e.g. out-of-sample)\n samples\
\ : int, optional\n Number of posterior samples to draw.\n\n Returns\n\
\ -------\n model : pymc.Model object\n PyMC3 model containing all\
\ random variables.\n trace : pymc3.sampling.BaseTrace object\n A PyMC3\
\ trace object that contains samples for each parameter\n of the posterior.\n\
\n See Also\n --------\n plot_stoch_vol : plotting of tochastic volatility\
\ model\n \"\"\"\n\n y = np.concatenate((y1, y2))\n\n mu_m = np.mean(y)\n\
\ mu_p = 0.000001 * 1 / np.std(y)**2\n\n sigma_low = np.std(y) / 1000\n\
\ sigma_high = np.std(y) * 1000\n with pm.Model() as model:\n group1_mean\
\ = pm.Normal('group1_mean', mu=mu_m, tau=mu_p,\n \
\ testval=y1.mean())\n group2_mean = pm.Normal('group2_mean', mu=mu_m,\
\ tau=mu_p,\n testval=y2.mean())\n group1_std\
\ = pm.Uniform('group1_std', lower=sigma_low,\n \
\ upper=sigma_high, testval=y1.std())\n group2_std = pm.Uniform('group2_std',\
\ lower=sigma_low,\n upper=sigma_high, testval=y2.std())\n\
\ nu = pm.Exponential('nu_minus_two', 1 / 29., testval=4.) + 2.\n\n \
\ returns_group1 = pm.StudentT('group1', nu=nu, mu=group1_mean,\n \
\ lam=group1_std**-2, observed=y1)\n returns_group2\
\ = pm.StudentT('group2', nu=nu, mu=group2_mean,\n \
\ lam=group2_std**-2, observed=y2)\n\n diff_of_means = pm.Deterministic('difference\
\ of means',\n group2_mean - group1_mean)\n\
\ pm.Deterministic('difference of stds',\n group2_std\
\ - group1_std)\n pm.Deterministic('effect size', diff_of_means /\n \
\ pm.math.sqrt((group1_std**2 +\n \
\ group2_std**2) / 2))\n\n pm.Deterministic('group1_annual_volatility',\n\
\ returns_group1.distribution.variance**.5 *\n \
\ np.sqrt(252))\n pm.Deterministic('group2_annual_volatility',\n\
\ returns_group2.distribution.variance**.5 *\n \
\ np.sqrt(252))\n\n pm.Deterministic('group1_sharpe',\
\ returns_group1.distribution.mean /\n returns_group1.distribution.variance**.5\
\ *\n np.sqrt(252))\n pm.Deterministic('group2_sharpe',\
\ returns_group2.distribution.mean /\n returns_group2.distribution.variance**.5\
\ *\n np.sqrt(252))\n\n trace = pm.sample(samples,\
\ progressbar=progressbar)\n return model, trace"
- "def clip_out_of_image(self):\n \"\"\"\n Clip off all parts from\
\ all bounding boxes that are outside of the image.\n\n Returns\n \
\ -------\n imgaug.BoundingBoxesOnImage\n Bounding boxes,\
\ clipped to fall within the image dimensions.\n\n \"\"\"\n bbs_cut\
\ = [bb.clip_out_of_image(self.shape)\n for bb in self.bounding_boxes\
\ if bb.is_partly_within_image(self.shape)]\n return BoundingBoxesOnImage(bbs_cut,\
\ shape=self.shape)"
- "def _initPermanence(self, potential, connectedPct):\n \"\"\"\n Initializes\
\ the permanences of a column. The method\n returns a 1-D array the size of\
\ the input, where each entry in the\n array represents the initial permanence\
\ value between the input bit\n at the particular index in the array, and the\
\ column represented by\n the 'index' parameter.\n\n Parameters:\n ----------------------------\n\
\ :param potential: A numpy array specifying the potential pool of the column.\n\
\ Permanence values will only be generated for input bits\n\
\ corresponding to indices for which the mask value is 1.\n\
\ :param connectedPct: A value between 0 or 1 governing the chance, for each\n\
\ permanence, that the initial permanence value will\n\
\ be a value that is considered connected.\n \"\"\"\
\n # Determine which inputs bits will start out as connected\n # to the\
\ inputs. Initially a subset of the input bits in a\n # column's potential\
\ pool will be connected. This number is\n # given by the parameter \"connectedPct\"\
\n perm = numpy.zeros(self._numInputs, dtype=realDType)\n for i in xrange(self._numInputs):\n\
\ if (potential[i] < 1):\n continue\n\n if (self._random.getReal64()\
\ <= connectedPct):\n perm[i] = self._initPermConnected()\n else:\n\
\ perm[i] = self._initPermNonConnected()\n\n # Clip off low values.\
\ Since we use a sparse representation\n # to store the permanence values this\
\ helps reduce memory\n # requirements.\n perm[perm < self._synPermTrimThreshold]\
\ = 0\n\n return perm"
- source_sentence: "Perform a weighted average over dicts that are each on a different\
\ node\n Input: local_name2valcount: dict mapping key -> (value, count)\n \
\ Returns: key -> mean"
sentences:
- "def MotionBlur(k=5, angle=(0, 360), direction=(-1.0, 1.0), order=1, name=None,\
\ deterministic=False, random_state=None):\n \"\"\"\n Augmenter that sharpens\
\ images and overlays the result with the original image.\n\n dtype support::\n\
\n See ``imgaug.augmenters.convolutional.Convolve``.\n\n Parameters\n\
\ ----------\n k : int or tuple of int or list of int or imgaug.parameters.StochasticParameter,\
\ optional\n Kernel size to use.\n\n * If a single int, then\
\ that value will be used for the height\n and width of the kernel.\n\
\ * If a tuple of two ints ``(a, b)``, then the kernel size will be\n\
\ sampled from the interval ``[a..b]``.\n * If a list,\
\ then a random value will be sampled from that list per image.\n *\
\ If a StochasticParameter, then ``N`` samples will be drawn from\n \
\ that parameter per ``N`` input images, each representing the kernel\n \
\ size for the nth image.\n\n angle : number or tuple of number or\
\ list of number or imgaug.parameters.StochasticParameter, optional\n Angle\
\ of the motion blur in degrees (clockwise, relative to top center direction).\n\
\n * If a number, exactly that value will be used.\n * If\
\ a tuple ``(a, b)``, a random value from the range ``a <= x <= b`` will\n \
\ be sampled per image.\n * If a list, then a random value\
\ will be sampled from that list per image.\n * If a StochasticParameter,\
\ a value will be sampled from the\n parameter per image.\n\n \
\ direction : number or tuple of number or list of number or imgaug.parameters.StochasticParameter,\
\ optional\n Forward/backward direction of the motion blur. Lower values\
\ towards -1.0 will point the motion blur towards\n the back (with angle\
\ provided via `angle`). Higher values towards 1.0 will point the motion blur\
\ forward.\n A value of 0.0 leads to a uniformly (but still angled) motion\
\ blur.\n\n * If a number, exactly that value will be used.\n \
\ * If a tuple ``(a, b)``, a random value from the range ``a <= x <= b``\
\ will\n be sampled per image.\n * If a list, then a random\
\ value will be sampled from that list per image.\n * If a StochasticParameter,\
\ a value will be sampled from the\n parameter per image.\n\n \
\ order : int or iterable of int or imgaug.ALL or imgaug.parameters.StochasticParameter,\
\ optional\n Interpolation order to use when rotating the kernel according\
\ to `angle`.\n See :func:`imgaug.augmenters.geometric.Affine.__init__`.\n\
\ Recommended to be ``0`` or ``1``, with ``0`` being faster, but less continuous/smooth\
\ as `angle` is changed,\n particularly around multiple of 45 degrees.\n\
\n name : None or str, optional\n See :func:`imgaug.augmenters.meta.Augmenter.__init__`.\n\
\n deterministic : bool, optional\n See :func:`imgaug.augmenters.meta.Augmenter.__init__`.\n\
\n random_state : None or int or numpy.random.RandomState, optional\n \
\ See :func:`imgaug.augmenters.meta.Augmenter.__init__`.\n\n Examples\n \
\ --------\n >>> aug = iaa.MotionBlur(k=15)\n\n Create a motion blur augmenter\
\ with kernel size of 15x15.\n\n >>> aug = iaa.MotionBlur(k=15, angle=[-45,\
\ 45])\n\n Create a motion blur augmenter with kernel size of 15x15 and a blur\
\ angle of either -45 or 45 degrees (randomly\n picked per image).\n\n \"\
\"\"\n # TODO allow (1, None) and set to identity matrix if k == 1\n k_param\
\ = iap.handle_discrete_param(k, \"k\", value_range=(3, None), tuple_to_uniform=True,\
\ list_to_choice=True,\n allow_floats=False)\n\
\ angle_param = iap.handle_continuous_param(angle, \"angle\", value_range=None,\
\ tuple_to_uniform=True,\n list_to_choice=True)\n\
\ direction_param = iap.handle_continuous_param(direction, \"direction\", value_range=(-1.0-1e-6,\
\ 1.0+1e-6),\n tuple_to_uniform=True,\
\ list_to_choice=True)\n\n def create_matrices(image, nb_channels, random_state_func):\n\
\ # avoid cyclic import between blur and geometric\n from . import\
\ geometric as iaa_geometric\n\n # force discrete for k_sample via int()\
\ in case of stochastic parameter\n k_sample = int(k_param.draw_sample(random_state=random_state_func))\n\
\ angle_sample = angle_param.draw_sample(random_state=random_state_func)\n\
\ direction_sample = direction_param.draw_sample(random_state=random_state_func)\n\
\n k_sample = k_sample if k_sample % 2 != 0 else k_sample + 1\n \
\ direction_sample = np.clip(direction_sample, -1.0, 1.0)\n direction_sample\
\ = (direction_sample + 1.0) / 2.0\n\n matrix = np.zeros((k_sample, k_sample),\
\ dtype=np.float32)\n matrix[:, k_sample//2] = np.linspace(float(direction_sample),\
\ 1.0 - float(direction_sample), num=k_sample)\n rot = iaa_geometric.Affine(rotate=angle_sample,\
\ order=order)\n matrix = (rot.augment_image((matrix * 255).astype(np.uint8))\
\ / 255.0).astype(np.float32)\n\n return [matrix/np.sum(matrix)] * nb_channels\n\
\n if name is None:\n name = \"Unnamed%s\" % (ia.caller_name(),)\n\n\
\ return iaa_convolutional.Convolve(create_matrices, name=name, deterministic=deterministic,\n\
\ random_state=random_state)"
- "def rolling_sharpe(returns, rolling_sharpe_window):\n \"\"\"\n Determines\
\ the rolling Sharpe ratio of a strategy.\n\n Parameters\n ----------\n\
\ returns : pd.Series\n Daily returns of the strategy, noncumulative.\n\
\ - See full explanation in tears.create_full_tear_sheet.\n rolling_sharpe_window\
\ : int\n Length of rolling window, in days, over which to compute.\n\n\
\ Returns\n -------\n pd.Series\n Rolling Sharpe ratio.\n\n \
\ Note\n -----\n See https://en.wikipedia.org/wiki/Sharpe_ratio for more\
\ details.\n \"\"\"\n\n return returns.rolling(rolling_sharpe_window).mean()\
\ \\\n / returns.rolling(rolling_sharpe_window).std() \\\n * np.sqrt(APPROX_BDAYS_PER_YEAR)"
- "def mpi_weighted_mean(comm, local_name2valcount):\n \"\"\"\n Perform a\
\ weighted average over dicts that are each on a different node\n Input: local_name2valcount:\
\ dict mapping key -> (value, count)\n Returns: key -> mean\n \"\"\"\n \
\ all_name2valcount = comm.gather(local_name2valcount)\n if comm.rank ==\
\ 0:\n name2sum = defaultdict(float)\n name2count = defaultdict(float)\n\
\ for n2vc in all_name2valcount:\n for (name, (val, count))\
\ in n2vc.items():\n try:\n val = float(val)\n\
\ except ValueError:\n if comm.rank == 0:\n\
\ warnings.warn('WARNING: tried to compute mean on non-float\
\ {}={}'.format(name, val))\n else:\n name2sum[name]\
\ += val * count\n name2count[name] += count\n return\
\ {name : name2sum[name] / name2count[name] for name in name2sum}\n else:\n\
\ return {}"
- source_sentence: "Generate and return the following encoder related substitution\
\ variables:\n\n encoderSpecsStr:\n For the base description file, this string\
\ defines the default\n encoding dicts for each encoder. For example:\n \
\ '__gym_encoder' : { 'fieldname': 'gym',\n 'n': 13,\n \
\ 'name': 'gym',\n 'type': 'SDRCategoryEncoder',\n 'w': 7},\n\
\ '__address_encoder' : { 'fieldname': 'address',\n 'n': 13,\n\
\ 'name': 'address',\n 'type': 'SDRCategoryEncoder',\n \
\ 'w': 7}\n\n encoderSchemaStr:\n For the base description file, this\
\ is a list containing a\n DeferredDictLookup entry for each encoder. For example:\n\
\ [DeferredDictLookup('__gym_encoder'),\n DeferredDictLookup('__address_encoder'),\n\
\ DeferredDictLookup('__timestamp_timeOfDay_encoder'),\n DeferredDictLookup('__timestamp_dayOfWeek_encoder'),\n\
\ DeferredDictLookup('__consumption_encoder')],\n\n permEncoderChoicesStr:\n\
\ For the permutations file, this defines the possible\n encoder dicts for\
\ each encoder. For example:\n '__timestamp_dayOfWeek_encoder': [\n \
\ None,\n {'fieldname':'timestamp',\n \
\ 'name': 'timestamp_timeOfDay',\n 'type':'DateEncoder'\n\
\ 'dayOfWeek': (7,1)\n },\n \
\ {'fieldname':'timestamp',\n 'name': 'timestamp_timeOfDay',\n\
\ 'type':'DateEncoder'\n 'dayOfWeek':\
\ (7,3)\n },\n ],\n\n '__field_consumption_encoder':\
\ [\n None,\n {'fieldname':'consumption',\n\
\ 'name': 'consumption',\n 'type':'AdaptiveScalarEncoder',\n\
\ 'n': 13,\n 'w': 7,\n \
\ }\n ]\n\n\n\n Parameters:\n --------------------------------------------------\n\
\ includedFields: item from the 'includedFields' section of the\n \
\ description JSON object. This is a list of dicts, each\n \
\ dict defining the field name, type, and optional min\n \
\ and max values.\n\n retval: (encoderSpecsStr, encoderSchemaStr permEncoderChoicesStr)"
sentences:
- "def _generateEncoderStringsV1(includedFields):\n \"\"\" Generate and return\
\ the following encoder related substitution variables:\n\n encoderSpecsStr:\n\
\ For the base description file, this string defines the default\n encoding\
\ dicts for each encoder. For example:\n '__gym_encoder' : { 'fieldname':\
\ 'gym',\n 'n': 13,\n 'name': 'gym',\n 'type': 'SDRCategoryEncoder',\n\
\ 'w': 7},\n '__address_encoder' : { 'fieldname': 'address',\n\
\ 'n': 13,\n 'name': 'address',\n 'type': 'SDRCategoryEncoder',\n\
\ 'w': 7}\n\n encoderSchemaStr:\n For the base description file,\
\ this is a list containing a\n DeferredDictLookup entry for each encoder.\
\ For example:\n [DeferredDictLookup('__gym_encoder'),\n DeferredDictLookup('__address_encoder'),\n\
\ DeferredDictLookup('__timestamp_timeOfDay_encoder'),\n DeferredDictLookup('__timestamp_dayOfWeek_encoder'),\n\
\ DeferredDictLookup('__consumption_encoder')],\n\n permEncoderChoicesStr:\n\
\ For the permutations file, this defines the possible\n encoder dicts for\
\ each encoder. For example:\n '__timestamp_dayOfWeek_encoder': [\n \
\ None,\n {'fieldname':'timestamp',\n \
\ 'name': 'timestamp_timeOfDay',\n 'type':'DateEncoder'\n\
\ 'dayOfWeek': (7,1)\n },\n \
\ {'fieldname':'timestamp',\n 'name': 'timestamp_timeOfDay',\n\
\ 'type':'DateEncoder'\n 'dayOfWeek':\
\ (7,3)\n },\n ],\n\n '__field_consumption_encoder':\
\ [\n None,\n {'fieldname':'consumption',\n\
\ 'name': 'consumption',\n 'type':'AdaptiveScalarEncoder',\n\
\ 'n': 13,\n 'w': 7,\n \
\ }\n ]\n\n\n\n Parameters:\n --------------------------------------------------\n\
\ includedFields: item from the 'includedFields' section of the\n \
\ description JSON object. This is a list of dicts, each\n \
\ dict defining the field name, type, and optional min\n \
\ and max values.\n\n retval: (encoderSpecsStr, encoderSchemaStr permEncoderChoicesStr)\n\
\n\n \"\"\"\n\n # ------------------------------------------------------------------------\n\
\ # First accumulate the possible choices for each encoder\n encoderChoicesList\
\ = []\n for fieldInfo in includedFields:\n\n fieldName = fieldInfo['fieldName']\n\
\n # Get the list of encoder choices for this field\n (choicesList, aggFunction)\
\ = _generateEncoderChoicesV1(fieldInfo)\n encoderChoicesList.extend(choicesList)\n\
\n\n # ------------------------------------------------------------------------\n\
\ # Generate the string containing the encoder specs and encoder schema. See\n\
\ # the function comments for an example of the encoderSpecsStr and\n # encoderSchemaStr\n\
\ #\n encoderSpecsList = []\n for encoderChoices in encoderChoicesList:\n \
\ # Use the last choice as the default in the base file because the 1st is\n\
\ # often None\n encoder = encoderChoices[-1]\n\n # Check for bad characters\n\
\ for c in _ILLEGAL_FIELDNAME_CHARACTERS:\n if encoder['name'].find(c)\
\ >= 0:\n raise _ExpGeneratorException(\"Illegal character in field: %r\
\ (%r)\" % (\n c, encoder['name']))\n\n encoderSpecsList.append(\"\
%s: \\n%s%s\" % (\n _quoteAndEscape(encoder['name']),\n 2*_ONE_INDENT,\n\
\ pprint.pformat(encoder, indent=2*_INDENT_STEP)))\n\n encoderSpecsStr\
\ = ',\\n '.join(encoderSpecsList)\n\n\n # ------------------------------------------------------------------------\n\
\ # Generate the string containing the permutation encoder choices. See the\n\
\ # function comments above for an example of the permEncoderChoicesStr\n\n\
\ permEncoderChoicesList = []\n for encoderChoices in encoderChoicesList:\n\
\ permEncoderChoicesList.append(\"%s: %s,\" % (\n _quoteAndEscape(encoderChoices[-1]['name']),\n\
\ pprint.pformat(encoderChoices, indent=2*_INDENT_STEP)))\n permEncoderChoicesStr\
\ = '\\n'.join(permEncoderChoicesList)\n permEncoderChoicesStr = _indentLines(permEncoderChoicesStr,\
\ 1,\n indentFirstLine=False)\n\n # Return\
\ results\n return (encoderSpecsStr, permEncoderChoicesStr)"
- "def shift(self, top=None, right=None, bottom=None, left=None):\n \"\"\"\
\n Shift/move the line strings from one or more image sides.\n\n \
\ Parameters\n ----------\n top : None or int, optional\n \
\ Amount of pixels by which to shift all bounding boxes from the\n \
\ top.\n\n right : None or int, optional\n Amount of pixels\
\ by which to shift all bounding boxes from the\n right.\n\n \
\ bottom : None or int, optional\n Amount of pixels by which to shift\
\ all bounding boxes from the\n bottom.\n\n left : None or int,\
\ optional\n Amount of pixels by which to shift all bounding boxes\
\ from the\n left.\n\n Returns\n -------\n imgaug.augmentables.lines.LineStringsOnImage\n\
\ Shifted line strings.\n\n \"\"\"\n lss_new = [ls.shift(top=top,\
\ right=right, bottom=bottom, left=left)\n for ls in self.line_strings]\n\
\ return LineStringsOnImage(lss_new, shape=self.shape)"
- "def cross_entropy_reward_loss(logits, actions, rewards, name=None):\n \"\"\
\"Calculate the loss for Policy Gradient Network.\n\n Parameters\n ----------\n\
\ logits : tensor\n The network outputs without softmax. This function\
\ implements softmax inside.\n actions : tensor or placeholder\n The\
\ agent actions.\n rewards : tensor or placeholder\n The rewards.\n\n\
\ Returns\n --------\n Tensor\n The TensorFlow loss function.\n\
\n Examples\n ----------\n >>> states_batch_pl = tf.placeholder(tf.float32,\
\ shape=[None, D])\n >>> network = InputLayer(states_batch_pl, name='input')\n\
\ >>> network = DenseLayer(network, n_units=H, act=tf.nn.relu, name='relu1')\n\
\ >>> network = DenseLayer(network, n_units=3, name='out')\n >>> probs =\
\ network.outputs\n >>> sampling_prob = tf.nn.softmax(probs)\n >>> actions_batch_pl\
\ = tf.placeholder(tf.int32, shape=[None])\n >>> discount_rewards_batch_pl\
\ = tf.placeholder(tf.float32, shape=[None])\n >>> loss = tl.rein.cross_entropy_reward_loss(probs,\
\ actions_batch_pl, discount_rewards_batch_pl)\n >>> train_op = tf.train.RMSPropOptimizer(learning_rate,\
\ decay_rate).minimize(loss)\n\n \"\"\"\n cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=actions,\
\ logits=logits, name=name)\n\n return tf.reduce_sum(tf.multiply(cross_entropy,\
\ rewards))"
- source_sentence: "Translate an index into coordinates, using the given coordinate\
\ system.\n\n Similar to ``numpy.unravel_index``.\n\n :param index: (int) The\
\ index of the point. The coordinates are expressed as a \n single index\
\ by using the dimensions as a mixed radix definition. For \n example,\
\ in dimensions 42x10, the point [1, 4] is index \n 1*420 + 4*10 = 460.\n\
\n :param dimensions (list of ints) The coordinate system.\n\n :returns: (list)\
\ of coordinates of length ``len(dimensions)``."
sentences:
- "def coordinatesFromIndex(index, dimensions):\n \"\"\"\n Translate an index\
\ into coordinates, using the given coordinate system.\n\n Similar to ``numpy.unravel_index``.\n\
\n :param index: (int) The index of the point. The coordinates are expressed\
\ as a \n single index by using the dimensions as a mixed radix definition.\
\ For \n example, in dimensions 42x10, the point [1, 4] is index \n \
\ 1*420 + 4*10 = 460.\n\n :param dimensions (list of ints) The coordinate\
\ system.\n\n :returns: (list) of coordinates of length ``len(dimensions)``.\n\
\ \"\"\"\n coordinates = [0] * len(dimensions)\n\n shifted = index\n for i\
\ in xrange(len(dimensions) - 1, 0, -1):\n coordinates[i] = shifted % dimensions[i]\n\
\ shifted = shifted / dimensions[i]\n\n coordinates[0] = shifted\n\n return\
\ coordinates"
- "def step(self, observation, **extra_feed):\n \"\"\"\n Compute next\
\ action(s) given the observation(s)\n\n Parameters:\n ----------\n\
\n observation observation data (either single or a batch)\n\n \
\ **extra_feed additional data such as state or mask (names of the arguments\
\ should match the ones in constructor, see __init__)\n\n Returns:\n \
\ -------\n (action, value estimate, next state, negative log likelihood\
\ of the action under current policy parameters) tuple\n \"\"\"\n\n \
\ a, v, state, neglogp = self._evaluate([self.action, self.vf, self.state,\
\ self.neglogp], observation, **extra_feed)\n if state.size == 0:\n \
\ state = None\n return a, v, state, neglogp"
- "def pretty_eta(seconds_left):\n \"\"\"Print the number of seconds in human\
\ readable format.\n\n Examples:\n 2 days\n 2 hours and 37 minutes\n\
\ less than a minute\n\n Paramters\n ---------\n seconds_left: int\n\
\ Number of seconds to be converted to the ETA\n Returns\n -------\n\
\ eta: str\n String representing the pretty ETA.\n \"\"\"\n minutes_left\
\ = seconds_left // 60\n seconds_left %= 60\n hours_left = minutes_left\
\ // 60\n minutes_left %= 60\n days_left = hours_left // 24\n hours_left\
\ %= 24\n\n def helper(cnt, name):\n return \"{} {}{}\".format(str(cnt),\
\ name, ('s' if cnt > 1 else ''))\n\n if days_left > 0:\n msg = helper(days_left,\
\ 'day')\n if hours_left > 0:\n msg += ' and ' + helper(hours_left,\
\ 'hour')\n return msg\n if hours_left > 0:\n msg = helper(hours_left,\
\ 'hour')\n if minutes_left > 0:\n msg += ' and ' + helper(minutes_left,\
\ 'minute')\n return msg\n if minutes_left > 0:\n return helper(minutes_left,\
\ 'minute')\n return 'less than a minute'"
- source_sentence: Validates control dictionary for the experiment context
sentences:
- "def load_file_list(path=None, regx='\\.jpg', printable=True, keep_prefix=False):\n\
\ r\"\"\"Return a file list in a folder by given a path and regular expression.\n\
\n Parameters\n ----------\n path : str or None\n A folder path,\
\ if `None`, use the current directory.\n regx : str\n The regx of file\
\ name.\n printable : boolean\n Whether to print the files infomation.\n\
\ keep_prefix : boolean\n Whether to keep path in the file name.\n\n\
\ Examples\n ----------\n >>> file_list = tl.files.load_file_list(path=None,\
\ regx='w1pre_[0-9]+\\.(npz)')\n\n \"\"\"\n if path is None:\n path\
\ = os.getcwd()\n file_list = os.listdir(path)\n return_list = []\n for\
\ _, f in enumerate(file_list):\n if re.search(regx, f):\n return_list.append(f)\n\
\ # return_list.sort()\n if keep_prefix:\n for i, f in enumerate(return_list):\n\
\ return_list[i] = os.path.join(path, f)\n\n if printable:\n \
\ logging.info('Match file list = %s' % return_list)\n logging.info('Number\
\ of files = %d' % len(return_list))\n return return_list"
- "def getCompletingSwarms(self):\n \"\"\"Return the list of all completing swarms.\n\
\n Parameters:\n ---------------------------------------------------------------------\n\
\ retval: list of active swarm Ids\n \"\"\"\n swarmIds = []\n for\
\ swarmId, info in self._state['swarms'].iteritems():\n if info['status']\
\ == 'completing':\n swarmIds.append(swarmId)\n\n return swarmIds"
- "def __validateExperimentControl(self, control):\n \"\"\" Validates control\
\ dictionary for the experiment context\"\"\"\n # Validate task list\n taskList\
\ = control.get('tasks', None)\n if taskList is not None:\n taskLabelsList\
\ = []\n\n for task in taskList:\n validateOpfJsonValue(task, \"opfTaskSchema.json\"\
)\n validateOpfJsonValue(task['taskControl'], \"opfTaskControlSchema.json\"\
)\n\n taskLabel = task['taskLabel']\n\n assert isinstance(taskLabel,\
\ types.StringTypes), \\\n \"taskLabel type: %r\" % type(taskLabel)\n\
\ assert len(taskLabel) > 0, \"empty string taskLabel not is allowed\"\n\
\n taskLabelsList.append(taskLabel.lower())\n\n taskLabelDuplicates\
\ = filter(lambda x: taskLabelsList.count(x) > 1,\n \
\ taskLabelsList)\n assert len(taskLabelDuplicates) == 0, \\\n \
\ \"Duplcate task labels are not allowed: %s\" % taskLabelDuplicates\n\
\n return"
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on answerdotai/ModernBERT-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the code_search_net dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) <!-- at revision 8949b909ec900327062f0ebf497f51aef5e6f0c8 -->
- **Maximum Sequence Length:** 4096 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- code_search_net
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 4096, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("juanwisz/modernbert-python-code-retrieval")
# Run inference
sentences = [
'Validates control dictionary for the experiment context',
'def __validateExperimentControl(self, control):\n """ Validates control dictionary for the experiment context"""\n # Validate task list\n taskList = control.get(\'tasks\', None)\n if taskList is not None:\n taskLabelsList = []\n\n for task in taskList:\n validateOpfJsonValue(task, "opfTaskSchema.json")\n validateOpfJsonValue(task[\'taskControl\'], "opfTaskControlSchema.json")\n\n taskLabel = task[\'taskLabel\']\n\n assert isinstance(taskLabel, types.StringTypes), \\\n "taskLabel type: %r" % type(taskLabel)\n assert len(taskLabel) > 0, "empty string taskLabel not is allowed"\n\n taskLabelsList.append(taskLabel.lower())\n\n taskLabelDuplicates = filter(lambda x: taskLabelsList.count(x) > 1,\n taskLabelsList)\n assert len(taskLabelDuplicates) == 0, \\\n "Duplcate task labels are not allowed: %s" % taskLabelDuplicates\n\n return',
'def load_file_list(path=None, regx=\'\\.jpg\', printable=True, keep_prefix=False):\n r"""Return a file list in a folder by given a path and regular expression.\n\n Parameters\n ----------\n path : str or None\n A folder path, if `None`, use the current directory.\n regx : str\n The regx of file name.\n printable : boolean\n Whether to print the files infomation.\n keep_prefix : boolean\n Whether to keep path in the file name.\n\n Examples\n ----------\n >>> file_list = tl.files.load_file_list(path=None, regx=\'w1pre_[0-9]+\\.(npz)\')\n\n """\n if path is None:\n path = os.getcwd()\n file_list = os.listdir(path)\n return_list = []\n for _, f in enumerate(file_list):\n if re.search(regx, f):\n return_list.append(f)\n # return_list.sort()\n if keep_prefix:\n for i, f in enumerate(return_list):\n return_list[i] = os.path.join(path, f)\n\n if printable:\n logging.info(\'Match file list = %s\' % return_list)\n logging.info(\'Number of files = %d\' % len(return_list))\n return return_list',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### code_search_net
* Dataset: code_search_net
* Size: 412,178 training samples
* Columns: <code>query</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | query | positive |
|:--------|:------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 73.72 tokens</li><li>max: 2258 tokens</li></ul> | <ul><li>min: 46 tokens</li><li>mean: 300.87 tokens</li><li>max: 3119 tokens</li></ul> |
* Samples:
| query | positive |
|:------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Extracts the list of arguments that start with any of the specified prefix values</code> | <code>def findArgs(args, prefixes):<br> """<br> Extracts the list of arguments that start with any of the specified prefix values<br> """<br> return list([<br> arg for arg in args<br> if len([p for p in prefixes if arg.lower().startswith(p.lower())]) > 0<br> ])</code> |
| <code>Removes any arguments in the supplied list that are contained in the specified blacklist</code> | <code>def stripArgs(args, blacklist):<br> """<br> Removes any arguments in the supplied list that are contained in the specified blacklist<br> """<br> blacklist = [b.lower() for b in blacklist]<br> return list([arg for arg in args if arg.lower() not in blacklist])</code> |
| <code>Executes a child process and captures its output</code> | <code>def capture(command, input=None, cwd=None, shell=False, raiseOnError=False):<br> """<br> Executes a child process and captures its output<br> """<br> <br> # Attempt to execute the child process<br> proc = subprocess.Popen(command, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=cwd, shell=shell, universal_newlines=True)<br> (stdout, stderr) = proc.communicate(input)<br> <br> # If the child process failed and we were asked to raise an exception, do so<br> if raiseOnError == True and proc.returncode != 0:<br> raise Exception(<br> 'child process ' + str(command) +<br> ' failed with exit code ' + str(proc.returncode) +<br> '\nstdout: "' + stdout + '"' +<br> '\nstderr: "' + stderr + '"'<br> )<br> <br> return CommandOutput(proc.returncode, stdout, stderr)</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### code_search_net
* Dataset: code_search_net
* Size: 23,107 evaluation samples
* Columns: <code>query</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | query | positive |
|:--------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 168.27 tokens</li><li>max: 2118 tokens</li></ul> | <ul><li>min: 48 tokens</li><li>mean: 467.9 tokens</li><li>max: 4096 tokens</li></ul> |
* Samples:
| query | positive |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Train a deepq model.<br><br> Parameters<br> -------<br> env: gym.Env<br> environment to train on<br> network: string or a function<br> neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models<br> (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which<br> will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)<br> seed: int or None<br> prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.<br> lr: float<br> learning rate for adam optimizer<br> total_timesteps: int<br> number of env steps to optimizer for<br> buffer_size: int<br> size of the replay buffer<br> exploration_fraction: float<br> fraction of entire training period over which the exploration rate is annealed<br> exploration_final_eps: float<br> final value of ra...</code> | <code>def learn(env,<br> network,<br> seed=None,<br> lr=5e-4,<br> total_timesteps=100000,<br> buffer_size=50000,<br> exploration_fraction=0.1,<br> exploration_final_eps=0.02,<br> train_freq=1,<br> batch_size=32,<br> print_freq=100,<br> checkpoint_freq=10000,<br> checkpoint_path=None,<br> learning_starts=1000,<br> gamma=1.0,<br> target_network_update_freq=500,<br> prioritized_replay=False,<br> prioritized_replay_alpha=0.6,<br> prioritized_replay_beta0=0.4,<br> prioritized_replay_beta_iters=None,<br> prioritized_replay_eps=1e-6,<br> param_noise=False,<br> callback=None,<br> load_path=None,<br> **network_kwargs<br> ):<br> """Train a deepq model.<br><br> Parameters<br> -------<br> env: gym.Env<br> environment to train on<br> network: string or a function<br> neural network to use as a q function approximator. If string, has to be one of the ...</code> |
| <code>Save model to a pickle located at `path`</code> | <code>def save_act(self, path=None):<br> """Save model to a pickle located at `path`"""<br> if path is None:<br> path = os.path.join(logger.get_dir(), "model.pkl")<br><br> with tempfile.TemporaryDirectory() as td:<br> save_variables(os.path.join(td, "model"))<br> arc_name = os.path.join(td, "packed.zip")<br> with zipfile.ZipFile(arc_name, 'w') as zipf:<br> for root, dirs, files in os.walk(td):<br> for fname in files:<br> file_path = os.path.join(root, fname)<br> if file_path != arc_name:<br> zipf.write(file_path, os.path.relpath(file_path, td))<br> with open(arc_name, "rb") as f:<br> model_data = f.read()<br> with open(path, "wb") as f:<br> cloudpickle.dump((model_data, self._act_params), f)</code> |
| <code>CNN from Nature paper.</code> | <code>def nature_cnn(unscaled_images, **conv_kwargs):<br> """<br> CNN from Nature paper.<br> """<br> scaled_images = tf.cast(unscaled_images, tf.float32) / 255.<br> activ = tf.nn.relu<br> h = activ(conv(scaled_images, 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2),<br> **conv_kwargs))<br> h2 = activ(conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2), **conv_kwargs))<br> h3 = activ(conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2), **conv_kwargs))<br> h3 = conv_to_fc(h3)<br> return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2)))</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 4
- `gradient_accumulation_steps`: 4
- `learning_rate`: 2e-05
- `num_train_epochs`: 10
- `warmup_steps`: 1000
- `fp16`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 4
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 1000
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:-----:|:-------------:|:---------------:|
| 0.0078 | 200 | 0.634 | - |
| 0.0155 | 400 | 0.0046 | - |
| 0.0233 | 600 | 0.0009 | - |
| 0.0311 | 800 | 0.0004 | - |
| 0.0388 | 1000 | 0.0001 | - |
| 0.0466 | 1200 | 0.0002 | - |
| 0.0543 | 1400 | 0.0001 | - |
| 0.0621 | 1600 | 0.0001 | - |
| 0.0699 | 1800 | 0.0001 | - |
| 0.0776 | 2000 | 0.0 | - |
| 0.0854 | 2200 | 0.0 | - |
| 0.0932 | 2400 | 0.0 | - |
| 0.1009 | 2600 | 0.0 | - |
| 0.1087 | 2800 | 0.0005 | - |
| 0.1165 | 3000 | 0.0005 | - |
| 0.1242 | 3200 | 0.0002 | - |
| 0.1320 | 3400 | 0.0 | - |
| 0.1397 | 3600 | 0.0 | - |
| 0.1475 | 3800 | 0.0 | - |
| 0.1553 | 4000 | 0.0001 | - |
| 0.1630 | 4200 | 0.0 | - |
| 0.1708 | 4400 | 0.0001 | - |
| 0.1786 | 4600 | 0.0001 | - |
| 0.1863 | 4800 | 0.0 | - |
| 0.1941 | 5000 | 0.0 | - |
| 0.2019 | 5200 | 0.0 | - |
| 0.2096 | 5400 | 0.0 | - |
| 0.2174 | 5600 | 0.0 | - |
| 0.2251 | 5800 | 0.0 | - |
| 0.2329 | 6000 | 0.0004 | - |
| 0.2407 | 6200 | 0.0 | - |
| 0.2484 | 6400 | 0.0001 | - |
| 0.2562 | 6600 | 0.0 | - |
| 0.2640 | 6800 | 0.0 | - |
| 0.2717 | 7000 | 0.0 | - |
| 0.2795 | 7200 | 0.0 | - |
| 0.2873 | 7400 | 0.0 | - |
| 0.2950 | 7600 | 0.0 | - |
| 0.3028 | 7800 | 0.0 | - |
| 0.3105 | 8000 | 0.0 | - |
| 0.3183 | 8200 | 0.0 | - |
| 0.3261 | 8400 | 0.0004 | - |
| 0.3338 | 8600 | 0.0 | - |
| 0.3416 | 8800 | 0.0 | - |
| 0.3494 | 9000 | 0.0 | - |
| 0.3571 | 9200 | 0.0 | - |
| 0.3649 | 9400 | 0.0 | - |
| 0.3727 | 9600 | 0.0 | - |
| 0.3804 | 9800 | 0.0 | - |
| 0.3882 | 10000 | 0.0 | - |
| 0.3959 | 10200 | 0.0 | - |
| 0.4037 | 10400 | 0.0 | - |
| 0.4115 | 10600 | 0.0 | - |
| 0.4192 | 10800 | 0.0 | - |
| 0.4270 | 11000 | 0.0 | - |
| 0.4348 | 11200 | 0.0 | - |
| 0.4425 | 11400 | 0.0 | - |
| 0.4503 | 11600 | 0.0 | - |
| 0.4581 | 11800 | 0.0 | - |
| 0.4658 | 12000 | 0.0 | - |
| 0.4736 | 12200 | 0.0 | - |
| 0.4813 | 12400 | 0.0 | - |
| 0.4891 | 12600 | 0.0005 | - |
| 0.4969 | 12800 | 0.0 | - |
| 0.5046 | 13000 | 0.0 | - |
| 0.5124 | 13200 | 0.0001 | - |
| 0.5202 | 13400 | 0.0 | - |
| 0.5279 | 13600 | 0.0 | - |
| 0.5357 | 13800 | 0.0 | - |
| 0.5435 | 14000 | 0.0 | - |
| 0.5512 | 14200 | 0.0 | - |
| 0.5590 | 14400 | 0.0004 | - |
| 0.5667 | 14600 | 0.0 | - |
| 0.5745 | 14800 | 0.0 | - |
| 0.5823 | 15000 | 0.0 | - |
| 0.5900 | 15200 | 0.0 | - |
| 0.5978 | 15400 | 0.0 | - |
| 0.6056 | 15600 | 0.0 | - |
| 0.6133 | 15800 | 0.0 | - |
| 0.6211 | 16000 | 0.0 | - |
| 0.6289 | 16200 | 0.0 | - |
| 0.6366 | 16400 | 0.0006 | - |
| 0.6444 | 16600 | 0.0 | - |
| 0.6521 | 16800 | 0.0005 | - |
| 0.6599 | 17000 | 0.0 | - |
| 0.6677 | 17200 | 0.0 | - |
| 0.6754 | 17400 | 0.0 | - |
| 0.6832 | 17600 | 0.0 | - |
| 0.6910 | 17800 | 0.0 | - |
| 0.6987 | 18000 | 0.0005 | - |
| 0.7065 | 18200 | 0.0001 | - |
| 0.7143 | 18400 | 0.0 | - |
| 0.7220 | 18600 | 0.0 | - |
| 0.7298 | 18800 | 0.0 | - |
| 0.7375 | 19000 | 0.0 | - |
| 0.7453 | 19200 | 0.0 | - |
| 0.7531 | 19400 | 0.0 | - |
| 0.7608 | 19600 | 0.0 | - |
| 0.7686 | 19800 | 0.0001 | - |
| 0.7764 | 20000 | 0.0 | - |
| 0.7841 | 20200 | 0.0 | - |
| 0.7919 | 20400 | 0.0 | - |
| 0.7997 | 20600 | 0.0004 | - |
| 0.8074 | 20800 | 0.0 | - |
| 0.8152 | 21000 | 0.0 | - |
| 0.8229 | 21200 | 0.0 | - |
| 0.8307 | 21400 | 0.0009 | - |
| 0.8385 | 21600 | 0.0 | - |
| 0.8462 | 21800 | 0.0 | - |
| 0.8540 | 22000 | 0.0 | - |
| 0.8618 | 22200 | 0.0 | - |
| 0.8695 | 22400 | 0.0002 | - |
| 0.8773 | 22600 | 0.0 | - |
| 0.8851 | 22800 | 0.0 | - |
| 0.8928 | 23000 | 0.0001 | - |
| 0.9006 | 23200 | 0.0 | - |
| 0.9083 | 23400 | 0.0 | - |
| 0.9161 | 23600 | 0.0 | - |
| 0.9239 | 23800 | 0.0 | - |
| 0.9316 | 24000 | 0.0 | - |
| 0.9394 | 24200 | 0.0 | - |
| 0.9472 | 24400 | 0.0 | - |
| 0.9549 | 24600 | 0.0 | - |
| 0.9627 | 24800 | 0.0 | - |
| 0.9704 | 25000 | 0.0 | - |
| 0.9782 | 25200 | 0.0 | - |
| 0.9860 | 25400 | 0.0 | - |
| 0.9937 | 25600 | 0.0 | - |
| 1.0 | 25762 | - | 0.0001 |
| 1.0015 | 25800 | 0.0005 | - |
| 1.0092 | 26000 | 0.0 | - |
| 1.0170 | 26200 | 0.0 | - |
| 1.0248 | 26400 | 0.0 | - |
| 1.0325 | 26600 | 0.0 | - |
| 1.0403 | 26800 | 0.0 | - |
| 1.0481 | 27000 | 0.0 | - |
| 1.0558 | 27200 | 0.0 | - |
| 1.0636 | 27400 | 0.0 | - |
| 1.0713 | 27600 | 0.0 | - |
| 1.0791 | 27800 | 0.0 | - |
| 1.0869 | 28000 | 0.0 | - |
| 1.0946 | 28200 | 0.0 | - |
| 1.1024 | 28400 | 0.0 | - |
| 1.1102 | 28600 | 0.0 | - |
| 1.1179 | 28800 | 0.0 | - |
| 1.1257 | 29000 | 0.0 | - |
| 1.1335 | 29200 | 0.0 | - |
| 1.1412 | 29400 | 0.0 | - |
| 1.1490 | 29600 | 0.0 | - |
| 1.1567 | 29800 | 0.0 | - |
| 1.1645 | 30000 | 0.0 | - |
| 1.1723 | 30200 | 0.0 | - |
| 1.1800 | 30400 | 0.0 | - |
| 1.1878 | 30600 | 0.0 | - |
| 1.1956 | 30800 | 0.0 | - |
| 1.2033 | 31000 | 0.0 | - |
| 1.2111 | 31200 | 0.0 | - |
| 1.2189 | 31400 | 0.0 | - |
| 1.2266 | 31600 | 0.0004 | - |
| 1.2344 | 31800 | 0.0004 | - |
| 1.2421 | 32000 | 0.0 | - |
| 1.2499 | 32200 | 0.0 | - |
| 1.2577 | 32400 | 0.0 | - |
| 1.2654 | 32600 | 0.0 | - |
| 1.2732 | 32800 | 0.0 | - |
| 1.2810 | 33000 | 0.0 | - |
| 1.2887 | 33200 | 0.0 | - |
| 1.2965 | 33400 | 0.0 | - |
| 1.3043 | 33600 | 0.0 | - |
| 1.3120 | 33800 | 0.0 | - |
| 1.3198 | 34000 | 0.0 | - |
| 1.3275 | 34200 | 0.0 | - |
| 1.3353 | 34400 | 0.0 | - |
| 1.3431 | 34600 | 0.0 | - |
| 1.3508 | 34800 | 0.0004 | - |
| 1.3586 | 35000 | 0.0005 | - |
| 1.3664 | 35200 | 0.0004 | - |
| 1.3741 | 35400 | 0.0011 | - |
| 1.3819 | 35600 | 0.0 | - |
| 1.3897 | 35800 | 0.0 | - |
| 1.3974 | 36000 | 0.0 | - |
| 1.4052 | 36200 | 0.0 | - |
| 1.4129 | 36400 | 0.0 | - |
| 1.4207 | 36600 | 0.0 | - |
| 1.4285 | 36800 | 0.0 | - |
| 1.4362 | 37000 | 0.0 | - |
| 1.4440 | 37200 | 0.0001 | - |
| 1.4518 | 37400 | 0.0 | - |
| 1.4595 | 37600 | 0.0 | - |
| 1.4673 | 37800 | 0.0 | - |
| 1.4751 | 38000 | 0.0 | - |
| 1.4828 | 38200 | 0.0004 | - |
| 1.4906 | 38400 | 0.0003 | - |
| 1.4983 | 38600 | 0.0 | - |
| 1.5061 | 38800 | 0.0 | - |
| 1.5139 | 39000 | 0.0 | - |
| 1.5216 | 39200 | 0.0 | - |
| 1.5294 | 39400 | 0.0004 | - |
| 1.5372 | 39600 | 0.0004 | - |
| 1.5449 | 39800 | 0.0 | - |
| 1.5527 | 40000 | 0.0 | - |
| 1.5605 | 40200 | 0.0 | - |
| 1.5682 | 40400 | 0.0 | - |
| 1.5760 | 40600 | 0.0009 | - |
| 1.5837 | 40800 | 0.0 | - |
| 1.5915 | 41000 | 0.0009 | - |
| 1.5993 | 41200 | 0.0 | - |
| 1.6070 | 41400 | 0.0 | - |
| 1.6148 | 41600 | 0.0 | - |
| 1.6226 | 41800 | 0.0 | - |
| 1.6303 | 42000 | 0.0 | - |
| 1.6381 | 42200 | 0.0 | - |
| 1.6459 | 42400 | 0.0 | - |
| 1.6536 | 42600 | 0.0 | - |
| 1.6614 | 42800 | 0.0 | - |
| 1.6691 | 43000 | 0.0 | - |
| 1.6769 | 43200 | 0.0 | - |
| 1.6847 | 43400 | 0.0 | - |
| 1.6924 | 43600 | 0.0 | - |
| 1.7002 | 43800 | 0.0 | - |
| 1.7080 | 44000 | 0.0 | - |
| 1.7157 | 44200 | 0.0 | - |
| 1.7235 | 44400 | 0.0 | - |
| 1.7313 | 44600 | 0.0 | - |
| 1.7390 | 44800 | 0.0 | - |
| 1.7468 | 45000 | 0.0 | - |
| 1.7545 | 45200 | 0.0 | - |
| 1.7623 | 45400 | 0.0 | - |
| 1.7701 | 45600 | 0.0 | - |
| 1.7778 | 45800 | 0.0 | - |
| 1.7856 | 46000 | 0.0 | - |
| 1.7934 | 46200 | 0.0 | - |
| 1.8011 | 46400 | 0.0 | - |
| 1.8089 | 46600 | 0.0 | - |
| 1.8167 | 46800 | 0.0 | - |
| 1.8244 | 47000 | 0.0 | - |
| 1.8322 | 47200 | 0.0 | - |
| 1.8399 | 47400 | 0.0 | - |
| 1.8477 | 47600 | 0.0 | - |
| 1.8555 | 47800 | 0.0004 | - |
| 1.8632 | 48000 | 0.0 | - |
| 1.8710 | 48200 | 0.0 | - |
| 1.8788 | 48400 | 0.0 | - |
| 1.8865 | 48600 | 0.0 | - |
| 1.8943 | 48800 | 0.0 | - |
| 1.9021 | 49000 | 0.0004 | - |
| 1.9098 | 49200 | 0.0 | - |
| 1.9176 | 49400 | 0.0 | - |
| 1.9253 | 49600 | 0.0004 | - |
| 1.9331 | 49800 | 0.0 | - |
| 1.9409 | 50000 | 0.0 | - |
| 1.9486 | 50200 | 0.0 | - |
| 1.9564 | 50400 | 0.0 | - |
| 1.9642 | 50600 | 0.0004 | - |
| 1.9719 | 50800 | 0.0 | - |
| 1.9797 | 51000 | 0.0 | - |
| 1.9875 | 51200 | 0.0 | - |
| 1.9952 | 51400 | 0.0004 | - |
| 2.0 | 51524 | - | 0.0001 |
| 2.0030 | 51600 | 0.0 | - |
| 2.0107 | 51800 | 0.0 | - |
| 2.0185 | 52000 | 0.0 | - |
| 2.0262 | 52200 | 0.0 | - |
| 2.0340 | 52400 | 0.0004 | - |
| 2.0418 | 52600 | 0.0004 | - |
| 2.0495 | 52800 | 0.0 | - |
| 2.0573 | 53000 | 0.0008 | - |
| 2.0651 | 53200 | 0.0 | - |
| 2.0728 | 53400 | 0.0 | - |
| 2.0806 | 53600 | 0.0 | - |
| 2.0883 | 53800 | 0.0 | - |
| 2.0961 | 54000 | 0.0 | - |
| 2.1039 | 54200 | 0.0 | - |
| 2.1116 | 54400 | 0.0 | - |
| 2.1194 | 54600 | 0.0 | - |
| 2.1272 | 54800 | 0.0 | - |
| 2.1349 | 55000 | 0.0 | - |
| 2.1427 | 55200 | 0.0 | - |
| 2.1505 | 55400 | 0.0 | - |
| 2.1582 | 55600 | 0.0 | - |
| 2.1660 | 55800 | 0.0 | - |
| 2.1737 | 56000 | 0.0 | - |
| 2.1815 | 56200 | 0.0 | - |
| 2.1893 | 56400 | 0.0 | - |
| 2.1970 | 56600 | 0.0 | - |
| 2.2048 | 56800 | 0.0 | - |
| 2.2126 | 57000 | 0.0 | - |
| 2.2203 | 57200 | 0.0 | - |
| 2.2281 | 57400 | 0.0 | - |
| 2.2359 | 57600 | 0.0 | - |
| 2.2436 | 57800 | 0.0 | - |
| 2.2514 | 58000 | 0.0004 | - |
| 2.2591 | 58200 | 0.0 | - |
| 2.2669 | 58400 | 0.0004 | - |
| 2.2747 | 58600 | 0.0 | - |
| 2.2824 | 58800 | 0.0 | - |
| 2.2902 | 59000 | 0.0 | - |
| 2.2980 | 59200 | 0.0 | - |
| 2.3057 | 59400 | 0.0 | - |
| 2.3135 | 59600 | 0.0 | - |
| 2.3213 | 59800 | 0.0004 | - |
| 2.3290 | 60000 | 0.0 | - |
| 2.3368 | 60200 | 0.0004 | - |
| 2.3445 | 60400 | 0.0 | - |
| 2.3523 | 60600 | 0.0 | - |
| 2.3601 | 60800 | 0.0 | - |
| 2.3678 | 61000 | 0.0 | - |
| 2.3756 | 61200 | 0.0 | - |
| 2.3834 | 61400 | 0.0 | - |
| 2.3911 | 61600 | 0.0 | - |
| 2.3989 | 61800 | 0.0 | - |
| 2.4067 | 62000 | 0.0005 | - |
| 2.4144 | 62200 | 0.0 | - |
| 2.4222 | 62400 | 0.0 | - |
| 2.4299 | 62600 | 0.0 | - |
| 2.4377 | 62800 | 0.0 | - |
| 2.4455 | 63000 | 0.0 | - |
| 2.4532 | 63200 | 0.0 | - |
| 2.4610 | 63400 | 0.0 | - |
| 2.4688 | 63600 | 0.0 | - |
| 2.4765 | 63800 | 0.0 | - |
| 2.4843 | 64000 | 0.0 | - |
| 2.4921 | 64200 | 0.0 | - |
| 2.4998 | 64400 | 0.0 | - |
| 2.5076 | 64600 | 0.0 | - |
| 2.5153 | 64800 | 0.0 | - |
| 2.5231 | 65000 | 0.0 | - |
| 2.5309 | 65200 | 0.0 | - |
| 2.5386 | 65400 | 0.0 | - |
| 2.5464 | 65600 | 0.0004 | - |
| 2.5542 | 65800 | 0.0 | - |
| 2.5619 | 66000 | 0.0 | - |
| 2.5697 | 66200 | 0.0 | - |
| 2.5775 | 66400 | 0.0 | - |
| 2.5852 | 66600 | 0.0 | - |
| 2.5930 | 66800 | 0.0 | - |
| 2.6007 | 67000 | 0.0 | - |
| 2.6085 | 67200 | 0.0 | - |
| 2.6163 | 67400 | 0.0 | - |
| 2.6240 | 67600 | 0.0 | - |
| 2.6318 | 67800 | 0.0 | - |
| 2.6396 | 68000 | 0.0 | - |
| 2.6473 | 68200 | 0.0 | - |
| 2.6551 | 68400 | 0.0 | - |
| 2.6629 | 68600 | 0.0 | - |
| 2.6706 | 68800 | 0.0004 | - |
| 2.6784 | 69000 | 0.0 | - |
| 2.6861 | 69200 | 0.0 | - |
| 2.6939 | 69400 | 0.0 | - |
| 2.7017 | 69600 | 0.0004 | - |
| 2.7094 | 69800 | 0.0004 | - |
| 2.7172 | 70000 | 0.0 | - |
| 2.7250 | 70200 | 0.0 | - |
| 2.7327 | 70400 | 0.0 | - |
| 2.7405 | 70600 | 0.0 | - |
| 2.7483 | 70800 | 0.0 | - |
| 2.7560 | 71000 | 0.0004 | - |
| 2.7638 | 71200 | 0.0 | - |
| 2.7715 | 71400 | 0.0 | - |
| 2.7793 | 71600 | 0.0 | - |
| 2.7871 | 71800 | 0.0 | - |
| 2.7948 | 72000 | 0.0 | - |
| 2.8026 | 72200 | 0.0 | - |
| 2.8104 | 72400 | 0.0 | - |
| 2.8181 | 72600 | 0.0 | - |
| 2.8259 | 72800 | 0.0 | - |
| 2.8337 | 73000 | 0.0004 | - |
| 2.8414 | 73200 | 0.0 | - |
| 2.8492 | 73400 | 0.0 | - |
| 2.8569 | 73600 | 0.0 | - |
| 2.8647 | 73800 | 0.0004 | - |
| 2.8725 | 74000 | 0.0 | - |
| 2.8802 | 74200 | 0.0 | - |
| 2.8880 | 74400 | 0.0 | - |
| 2.8958 | 74600 | 0.0 | - |
| 2.9035 | 74800 | 0.0 | - |
| 2.9113 | 75000 | 0.0 | - |
| 2.9191 | 75200 | 0.0 | - |
| 2.9268 | 75400 | 0.0004 | - |
| 2.9346 | 75600 | 0.0 | - |
| 2.9423 | 75800 | 0.0 | - |
| 2.9501 | 76000 | 0.0 | - |
| 2.9579 | 76200 | 0.0 | - |
| 2.9656 | 76400 | 0.0 | - |
| 2.9734 | 76600 | 0.0004 | - |
| 2.9812 | 76800 | 0.0 | - |
| 2.9889 | 77000 | 0.0 | - |
| 2.9967 | 77200 | 0.0 | - |
| 3.0 | 77286 | - | 0.0000 |
</details>
### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### ModernBERT
```bibtex
@misc{warner2024smarterbetterfasterlonger,
title={Smarter, Better, Faster, Longer: A Modern Bidirectional Encoder for Fast, Memory Efficient, and Long Context Finetuning and Inference},
author={Benjamin Warner and Antoine Chaffin and Benjamin Clavié and Orion Weller and Oskar Hallström and Said Taghadouini and Alexis Gallagher and Raja Biswas and Faisal Ladhak and Tom Aarsen and Nathan Cooper and Griffin Adams and Jeremy Howard and Iacopo Poli},
year={2024},
eprint={2412.13663},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2412.13663},
}
```
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |