Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- README.md +1107 -0
- config.json +47 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +952 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,1107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:412178
|
8 |
+
- loss:MultipleNegativesRankingLoss
|
9 |
+
base_model: answerdotai/ModernBERT-base
|
10 |
+
widget:
|
11 |
+
- source_sentence: "Clip off all parts from all bounding boxes that are outside of\
|
12 |
+
\ the image.\n\n Returns\n -------\n imgaug.BoundingBoxesOnImage\n\
|
13 |
+
\ Bounding boxes, clipped to fall within the image dimensions."
|
14 |
+
sentences:
|
15 |
+
- "def model_best(y1, y2, samples=1000, progressbar=True):\n \"\"\"\n Bayesian\
|
16 |
+
\ Estimation Supersedes the T-Test\n\n This model runs a Bayesian hypothesis\
|
17 |
+
\ comparing if y1 and y2 come\n from the same distribution. Returns are assumed\
|
18 |
+
\ to be T-distributed.\n\n In addition, computes annual volatility and Sharpe\
|
19 |
+
\ of in and\n out-of-sample periods.\n\n This model replicates the example\
|
20 |
+
\ used in:\n Kruschke, John. (2012) Bayesian estimation supersedes the t\n\
|
21 |
+
\ test. Journal of Experimental Psychology: General.\n\n Parameters\n \
|
22 |
+
\ ----------\n y1 : array-like\n Array of returns (e.g. in-sample)\n\
|
23 |
+
\ y2 : array-like\n Array of returns (e.g. out-of-sample)\n samples\
|
24 |
+
\ : int, optional\n Number of posterior samples to draw.\n\n Returns\n\
|
25 |
+
\ -------\n model : pymc.Model object\n PyMC3 model containing all\
|
26 |
+
\ random variables.\n trace : pymc3.sampling.BaseTrace object\n A PyMC3\
|
27 |
+
\ trace object that contains samples for each parameter\n of the posterior.\n\
|
28 |
+
\n See Also\n --------\n plot_stoch_vol : plotting of tochastic volatility\
|
29 |
+
\ model\n \"\"\"\n\n y = np.concatenate((y1, y2))\n\n mu_m = np.mean(y)\n\
|
30 |
+
\ mu_p = 0.000001 * 1 / np.std(y)**2\n\n sigma_low = np.std(y) / 1000\n\
|
31 |
+
\ sigma_high = np.std(y) * 1000\n with pm.Model() as model:\n group1_mean\
|
32 |
+
\ = pm.Normal('group1_mean', mu=mu_m, tau=mu_p,\n \
|
33 |
+
\ testval=y1.mean())\n group2_mean = pm.Normal('group2_mean', mu=mu_m,\
|
34 |
+
\ tau=mu_p,\n testval=y2.mean())\n group1_std\
|
35 |
+
\ = pm.Uniform('group1_std', lower=sigma_low,\n \
|
36 |
+
\ upper=sigma_high, testval=y1.std())\n group2_std = pm.Uniform('group2_std',\
|
37 |
+
\ lower=sigma_low,\n upper=sigma_high, testval=y2.std())\n\
|
38 |
+
\ nu = pm.Exponential('nu_minus_two', 1 / 29., testval=4.) + 2.\n\n \
|
39 |
+
\ returns_group1 = pm.StudentT('group1', nu=nu, mu=group1_mean,\n \
|
40 |
+
\ lam=group1_std**-2, observed=y1)\n returns_group2\
|
41 |
+
\ = pm.StudentT('group2', nu=nu, mu=group2_mean,\n \
|
42 |
+
\ lam=group2_std**-2, observed=y2)\n\n diff_of_means = pm.Deterministic('difference\
|
43 |
+
\ of means',\n group2_mean - group1_mean)\n\
|
44 |
+
\ pm.Deterministic('difference of stds',\n group2_std\
|
45 |
+
\ - group1_std)\n pm.Deterministic('effect size', diff_of_means /\n \
|
46 |
+
\ pm.math.sqrt((group1_std**2 +\n \
|
47 |
+
\ group2_std**2) / 2))\n\n pm.Deterministic('group1_annual_volatility',\n\
|
48 |
+
\ returns_group1.distribution.variance**.5 *\n \
|
49 |
+
\ np.sqrt(252))\n pm.Deterministic('group2_annual_volatility',\n\
|
50 |
+
\ returns_group2.distribution.variance**.5 *\n \
|
51 |
+
\ np.sqrt(252))\n\n pm.Deterministic('group1_sharpe',\
|
52 |
+
\ returns_group1.distribution.mean /\n returns_group1.distribution.variance**.5\
|
53 |
+
\ *\n np.sqrt(252))\n pm.Deterministic('group2_sharpe',\
|
54 |
+
\ returns_group2.distribution.mean /\n returns_group2.distribution.variance**.5\
|
55 |
+
\ *\n np.sqrt(252))\n\n trace = pm.sample(samples,\
|
56 |
+
\ progressbar=progressbar)\n return model, trace"
|
57 |
+
- "def clip_out_of_image(self):\n \"\"\"\n Clip off all parts from\
|
58 |
+
\ all bounding boxes that are outside of the image.\n\n Returns\n \
|
59 |
+
\ -------\n imgaug.BoundingBoxesOnImage\n Bounding boxes,\
|
60 |
+
\ clipped to fall within the image dimensions.\n\n \"\"\"\n bbs_cut\
|
61 |
+
\ = [bb.clip_out_of_image(self.shape)\n for bb in self.bounding_boxes\
|
62 |
+
\ if bb.is_partly_within_image(self.shape)]\n return BoundingBoxesOnImage(bbs_cut,\
|
63 |
+
\ shape=self.shape)"
|
64 |
+
- "def _initPermanence(self, potential, connectedPct):\n \"\"\"\n Initializes\
|
65 |
+
\ the permanences of a column. The method\n returns a 1-D array the size of\
|
66 |
+
\ the input, where each entry in the\n array represents the initial permanence\
|
67 |
+
\ value between the input bit\n at the particular index in the array, and the\
|
68 |
+
\ column represented by\n the 'index' parameter.\n\n Parameters:\n ----------------------------\n\
|
69 |
+
\ :param potential: A numpy array specifying the potential pool of the column.\n\
|
70 |
+
\ Permanence values will only be generated for input bits\n\
|
71 |
+
\ corresponding to indices for which the mask value is 1.\n\
|
72 |
+
\ :param connectedPct: A value between 0 or 1 governing the chance, for each\n\
|
73 |
+
\ permanence, that the initial permanence value will\n\
|
74 |
+
\ be a value that is considered connected.\n \"\"\"\
|
75 |
+
\n # Determine which inputs bits will start out as connected\n # to the\
|
76 |
+
\ inputs. Initially a subset of the input bits in a\n # column's potential\
|
77 |
+
\ pool will be connected. This number is\n # given by the parameter \"connectedPct\"\
|
78 |
+
\n perm = numpy.zeros(self._numInputs, dtype=realDType)\n for i in xrange(self._numInputs):\n\
|
79 |
+
\ if (potential[i] < 1):\n continue\n\n if (self._random.getReal64()\
|
80 |
+
\ <= connectedPct):\n perm[i] = self._initPermConnected()\n else:\n\
|
81 |
+
\ perm[i] = self._initPermNonConnected()\n\n # Clip off low values.\
|
82 |
+
\ Since we use a sparse representation\n # to store the permanence values this\
|
83 |
+
\ helps reduce memory\n # requirements.\n perm[perm < self._synPermTrimThreshold]\
|
84 |
+
\ = 0\n\n return perm"
|
85 |
+
- source_sentence: "Perform a weighted average over dicts that are each on a different\
|
86 |
+
\ node\n Input: local_name2valcount: dict mapping key -> (value, count)\n \
|
87 |
+
\ Returns: key -> mean"
|
88 |
+
sentences:
|
89 |
+
- "def MotionBlur(k=5, angle=(0, 360), direction=(-1.0, 1.0), order=1, name=None,\
|
90 |
+
\ deterministic=False, random_state=None):\n \"\"\"\n Augmenter that sharpens\
|
91 |
+
\ images and overlays the result with the original image.\n\n dtype support::\n\
|
92 |
+
\n See ``imgaug.augmenters.convolutional.Convolve``.\n\n Parameters\n\
|
93 |
+
\ ----------\n k : int or tuple of int or list of int or imgaug.parameters.StochasticParameter,\
|
94 |
+
\ optional\n Kernel size to use.\n\n * If a single int, then\
|
95 |
+
\ that value will be used for the height\n and width of the kernel.\n\
|
96 |
+
\ * If a tuple of two ints ``(a, b)``, then the kernel size will be\n\
|
97 |
+
\ sampled from the interval ``[a..b]``.\n * If a list,\
|
98 |
+
\ then a random value will be sampled from that list per image.\n *\
|
99 |
+
\ If a StochasticParameter, then ``N`` samples will be drawn from\n \
|
100 |
+
\ that parameter per ``N`` input images, each representing the kernel\n \
|
101 |
+
\ size for the nth image.\n\n angle : number or tuple of number or\
|
102 |
+
\ list of number or imgaug.parameters.StochasticParameter, optional\n Angle\
|
103 |
+
\ of the motion blur in degrees (clockwise, relative to top center direction).\n\
|
104 |
+
\n * If a number, exactly that value will be used.\n * If\
|
105 |
+
\ a tuple ``(a, b)``, a random value from the range ``a <= x <= b`` will\n \
|
106 |
+
\ be sampled per image.\n * If a list, then a random value\
|
107 |
+
\ will be sampled from that list per image.\n * If a StochasticParameter,\
|
108 |
+
\ a value will be sampled from the\n parameter per image.\n\n \
|
109 |
+
\ direction : number or tuple of number or list of number or imgaug.parameters.StochasticParameter,\
|
110 |
+
\ optional\n Forward/backward direction of the motion blur. Lower values\
|
111 |
+
\ towards -1.0 will point the motion blur towards\n the back (with angle\
|
112 |
+
\ provided via `angle`). Higher values towards 1.0 will point the motion blur\
|
113 |
+
\ forward.\n A value of 0.0 leads to a uniformly (but still angled) motion\
|
114 |
+
\ blur.\n\n * If a number, exactly that value will be used.\n \
|
115 |
+
\ * If a tuple ``(a, b)``, a random value from the range ``a <= x <= b``\
|
116 |
+
\ will\n be sampled per image.\n * If a list, then a random\
|
117 |
+
\ value will be sampled from that list per image.\n * If a StochasticParameter,\
|
118 |
+
\ a value will be sampled from the\n parameter per image.\n\n \
|
119 |
+
\ order : int or iterable of int or imgaug.ALL or imgaug.parameters.StochasticParameter,\
|
120 |
+
\ optional\n Interpolation order to use when rotating the kernel according\
|
121 |
+
\ to `angle`.\n See :func:`imgaug.augmenters.geometric.Affine.__init__`.\n\
|
122 |
+
\ Recommended to be ``0`` or ``1``, with ``0`` being faster, but less continuous/smooth\
|
123 |
+
\ as `angle` is changed,\n particularly around multiple of 45 degrees.\n\
|
124 |
+
\n name : None or str, optional\n See :func:`imgaug.augmenters.meta.Augmenter.__init__`.\n\
|
125 |
+
\n deterministic : bool, optional\n See :func:`imgaug.augmenters.meta.Augmenter.__init__`.\n\
|
126 |
+
\n random_state : None or int or numpy.random.RandomState, optional\n \
|
127 |
+
\ See :func:`imgaug.augmenters.meta.Augmenter.__init__`.\n\n Examples\n \
|
128 |
+
\ --------\n >>> aug = iaa.MotionBlur(k=15)\n\n Create a motion blur augmenter\
|
129 |
+
\ with kernel size of 15x15.\n\n >>> aug = iaa.MotionBlur(k=15, angle=[-45,\
|
130 |
+
\ 45])\n\n Create a motion blur augmenter with kernel size of 15x15 and a blur\
|
131 |
+
\ angle of either -45 or 45 degrees (randomly\n picked per image).\n\n \"\
|
132 |
+
\"\"\n # TODO allow (1, None) and set to identity matrix if k == 1\n k_param\
|
133 |
+
\ = iap.handle_discrete_param(k, \"k\", value_range=(3, None), tuple_to_uniform=True,\
|
134 |
+
\ list_to_choice=True,\n allow_floats=False)\n\
|
135 |
+
\ angle_param = iap.handle_continuous_param(angle, \"angle\", value_range=None,\
|
136 |
+
\ tuple_to_uniform=True,\n list_to_choice=True)\n\
|
137 |
+
\ direction_param = iap.handle_continuous_param(direction, \"direction\", value_range=(-1.0-1e-6,\
|
138 |
+
\ 1.0+1e-6),\n tuple_to_uniform=True,\
|
139 |
+
\ list_to_choice=True)\n\n def create_matrices(image, nb_channels, random_state_func):\n\
|
140 |
+
\ # avoid cyclic import between blur and geometric\n from . import\
|
141 |
+
\ geometric as iaa_geometric\n\n # force discrete for k_sample via int()\
|
142 |
+
\ in case of stochastic parameter\n k_sample = int(k_param.draw_sample(random_state=random_state_func))\n\
|
143 |
+
\ angle_sample = angle_param.draw_sample(random_state=random_state_func)\n\
|
144 |
+
\ direction_sample = direction_param.draw_sample(random_state=random_state_func)\n\
|
145 |
+
\n k_sample = k_sample if k_sample % 2 != 0 else k_sample + 1\n \
|
146 |
+
\ direction_sample = np.clip(direction_sample, -1.0, 1.0)\n direction_sample\
|
147 |
+
\ = (direction_sample + 1.0) / 2.0\n\n matrix = np.zeros((k_sample, k_sample),\
|
148 |
+
\ dtype=np.float32)\n matrix[:, k_sample//2] = np.linspace(float(direction_sample),\
|
149 |
+
\ 1.0 - float(direction_sample), num=k_sample)\n rot = iaa_geometric.Affine(rotate=angle_sample,\
|
150 |
+
\ order=order)\n matrix = (rot.augment_image((matrix * 255).astype(np.uint8))\
|
151 |
+
\ / 255.0).astype(np.float32)\n\n return [matrix/np.sum(matrix)] * nb_channels\n\
|
152 |
+
\n if name is None:\n name = \"Unnamed%s\" % (ia.caller_name(),)\n\n\
|
153 |
+
\ return iaa_convolutional.Convolve(create_matrices, name=name, deterministic=deterministic,\n\
|
154 |
+
\ random_state=random_state)"
|
155 |
+
- "def rolling_sharpe(returns, rolling_sharpe_window):\n \"\"\"\n Determines\
|
156 |
+
\ the rolling Sharpe ratio of a strategy.\n\n Parameters\n ----------\n\
|
157 |
+
\ returns : pd.Series\n Daily returns of the strategy, noncumulative.\n\
|
158 |
+
\ - See full explanation in tears.create_full_tear_sheet.\n rolling_sharpe_window\
|
159 |
+
\ : int\n Length of rolling window, in days, over which to compute.\n\n\
|
160 |
+
\ Returns\n -------\n pd.Series\n Rolling Sharpe ratio.\n\n \
|
161 |
+
\ Note\n -----\n See https://en.wikipedia.org/wiki/Sharpe_ratio for more\
|
162 |
+
\ details.\n \"\"\"\n\n return returns.rolling(rolling_sharpe_window).mean()\
|
163 |
+
\ \\\n / returns.rolling(rolling_sharpe_window).std() \\\n * np.sqrt(APPROX_BDAYS_PER_YEAR)"
|
164 |
+
- "def mpi_weighted_mean(comm, local_name2valcount):\n \"\"\"\n Perform a\
|
165 |
+
\ weighted average over dicts that are each on a different node\n Input: local_name2valcount:\
|
166 |
+
\ dict mapping key -> (value, count)\n Returns: key -> mean\n \"\"\"\n \
|
167 |
+
\ all_name2valcount = comm.gather(local_name2valcount)\n if comm.rank ==\
|
168 |
+
\ 0:\n name2sum = defaultdict(float)\n name2count = defaultdict(float)\n\
|
169 |
+
\ for n2vc in all_name2valcount:\n for (name, (val, count))\
|
170 |
+
\ in n2vc.items():\n try:\n val = float(val)\n\
|
171 |
+
\ except ValueError:\n if comm.rank == 0:\n\
|
172 |
+
\ warnings.warn('WARNING: tried to compute mean on non-float\
|
173 |
+
\ {}={}'.format(name, val))\n else:\n name2sum[name]\
|
174 |
+
\ += val * count\n name2count[name] += count\n return\
|
175 |
+
\ {name : name2sum[name] / name2count[name] for name in name2sum}\n else:\n\
|
176 |
+
\ return {}"
|
177 |
+
- source_sentence: "Generate and return the following encoder related substitution\
|
178 |
+
\ variables:\n\n encoderSpecsStr:\n For the base description file, this string\
|
179 |
+
\ defines the default\n encoding dicts for each encoder. For example:\n \
|
180 |
+
\ '__gym_encoder' : { 'fieldname': 'gym',\n 'n': 13,\n \
|
181 |
+
\ 'name': 'gym',\n 'type': 'SDRCategoryEncoder',\n 'w': 7},\n\
|
182 |
+
\ '__address_encoder' : { 'fieldname': 'address',\n 'n': 13,\n\
|
183 |
+
\ 'name': 'address',\n 'type': 'SDRCategoryEncoder',\n \
|
184 |
+
\ 'w': 7}\n\n encoderSchemaStr:\n For the base description file, this\
|
185 |
+
\ is a list containing a\n DeferredDictLookup entry for each encoder. For example:\n\
|
186 |
+
\ [DeferredDictLookup('__gym_encoder'),\n DeferredDictLookup('__address_encoder'),\n\
|
187 |
+
\ DeferredDictLookup('__timestamp_timeOfDay_encoder'),\n DeferredDictLookup('__timestamp_dayOfWeek_encoder'),\n\
|
188 |
+
\ DeferredDictLookup('__consumption_encoder')],\n\n permEncoderChoicesStr:\n\
|
189 |
+
\ For the permutations file, this defines the possible\n encoder dicts for\
|
190 |
+
\ each encoder. For example:\n '__timestamp_dayOfWeek_encoder': [\n \
|
191 |
+
\ None,\n {'fieldname':'timestamp',\n \
|
192 |
+
\ 'name': 'timestamp_timeOfDay',\n 'type':'DateEncoder'\n\
|
193 |
+
\ 'dayOfWeek': (7,1)\n },\n \
|
194 |
+
\ {'fieldname':'timestamp',\n 'name': 'timestamp_timeOfDay',\n\
|
195 |
+
\ 'type':'DateEncoder'\n 'dayOfWeek':\
|
196 |
+
\ (7,3)\n },\n ],\n\n '__field_consumption_encoder':\
|
197 |
+
\ [\n None,\n {'fieldname':'consumption',\n\
|
198 |
+
\ 'name': 'consumption',\n 'type':'AdaptiveScalarEncoder',\n\
|
199 |
+
\ 'n': 13,\n 'w': 7,\n \
|
200 |
+
\ }\n ]\n\n\n\n Parameters:\n --------------------------------------------------\n\
|
201 |
+
\ includedFields: item from the 'includedFields' section of the\n \
|
202 |
+
\ description JSON object. This is a list of dicts, each\n \
|
203 |
+
\ dict defining the field name, type, and optional min\n \
|
204 |
+
\ and max values.\n\n retval: (encoderSpecsStr, encoderSchemaStr permEncoderChoicesStr)"
|
205 |
+
sentences:
|
206 |
+
- "def _generateEncoderStringsV1(includedFields):\n \"\"\" Generate and return\
|
207 |
+
\ the following encoder related substitution variables:\n\n encoderSpecsStr:\n\
|
208 |
+
\ For the base description file, this string defines the default\n encoding\
|
209 |
+
\ dicts for each encoder. For example:\n '__gym_encoder' : { 'fieldname':\
|
210 |
+
\ 'gym',\n 'n': 13,\n 'name': 'gym',\n 'type': 'SDRCategoryEncoder',\n\
|
211 |
+
\ 'w': 7},\n '__address_encoder' : { 'fieldname': 'address',\n\
|
212 |
+
\ 'n': 13,\n 'name': 'address',\n 'type': 'SDRCategoryEncoder',\n\
|
213 |
+
\ 'w': 7}\n\n encoderSchemaStr:\n For the base description file,\
|
214 |
+
\ this is a list containing a\n DeferredDictLookup entry for each encoder.\
|
215 |
+
\ For example:\n [DeferredDictLookup('__gym_encoder'),\n DeferredDictLookup('__address_encoder'),\n\
|
216 |
+
\ DeferredDictLookup('__timestamp_timeOfDay_encoder'),\n DeferredDictLookup('__timestamp_dayOfWeek_encoder'),\n\
|
217 |
+
\ DeferredDictLookup('__consumption_encoder')],\n\n permEncoderChoicesStr:\n\
|
218 |
+
\ For the permutations file, this defines the possible\n encoder dicts for\
|
219 |
+
\ each encoder. For example:\n '__timestamp_dayOfWeek_encoder': [\n \
|
220 |
+
\ None,\n {'fieldname':'timestamp',\n \
|
221 |
+
\ 'name': 'timestamp_timeOfDay',\n 'type':'DateEncoder'\n\
|
222 |
+
\ 'dayOfWeek': (7,1)\n },\n \
|
223 |
+
\ {'fieldname':'timestamp',\n 'name': 'timestamp_timeOfDay',\n\
|
224 |
+
\ 'type':'DateEncoder'\n 'dayOfWeek':\
|
225 |
+
\ (7,3)\n },\n ],\n\n '__field_consumption_encoder':\
|
226 |
+
\ [\n None,\n {'fieldname':'consumption',\n\
|
227 |
+
\ 'name': 'consumption',\n 'type':'AdaptiveScalarEncoder',\n\
|
228 |
+
\ 'n': 13,\n 'w': 7,\n \
|
229 |
+
\ }\n ]\n\n\n\n Parameters:\n --------------------------------------------------\n\
|
230 |
+
\ includedFields: item from the 'includedFields' section of the\n \
|
231 |
+
\ description JSON object. This is a list of dicts, each\n \
|
232 |
+
\ dict defining the field name, type, and optional min\n \
|
233 |
+
\ and max values.\n\n retval: (encoderSpecsStr, encoderSchemaStr permEncoderChoicesStr)\n\
|
234 |
+
\n\n \"\"\"\n\n # ------------------------------------------------------------------------\n\
|
235 |
+
\ # First accumulate the possible choices for each encoder\n encoderChoicesList\
|
236 |
+
\ = []\n for fieldInfo in includedFields:\n\n fieldName = fieldInfo['fieldName']\n\
|
237 |
+
\n # Get the list of encoder choices for this field\n (choicesList, aggFunction)\
|
238 |
+
\ = _generateEncoderChoicesV1(fieldInfo)\n encoderChoicesList.extend(choicesList)\n\
|
239 |
+
\n\n # ------------------------------------------------------------------------\n\
|
240 |
+
\ # Generate the string containing the encoder specs and encoder schema. See\n\
|
241 |
+
\ # the function comments for an example of the encoderSpecsStr and\n # encoderSchemaStr\n\
|
242 |
+
\ #\n encoderSpecsList = []\n for encoderChoices in encoderChoicesList:\n \
|
243 |
+
\ # Use the last choice as the default in the base file because the 1st is\n\
|
244 |
+
\ # often None\n encoder = encoderChoices[-1]\n\n # Check for bad characters\n\
|
245 |
+
\ for c in _ILLEGAL_FIELDNAME_CHARACTERS:\n if encoder['name'].find(c)\
|
246 |
+
\ >= 0:\n raise _ExpGeneratorException(\"Illegal character in field: %r\
|
247 |
+
\ (%r)\" % (\n c, encoder['name']))\n\n encoderSpecsList.append(\"\
|
248 |
+
%s: \\n%s%s\" % (\n _quoteAndEscape(encoder['name']),\n 2*_ONE_INDENT,\n\
|
249 |
+
\ pprint.pformat(encoder, indent=2*_INDENT_STEP)))\n\n encoderSpecsStr\
|
250 |
+
\ = ',\\n '.join(encoderSpecsList)\n\n\n # ------------------------------------------------------------------------\n\
|
251 |
+
\ # Generate the string containing the permutation encoder choices. See the\n\
|
252 |
+
\ # function comments above for an example of the permEncoderChoicesStr\n\n\
|
253 |
+
\ permEncoderChoicesList = []\n for encoderChoices in encoderChoicesList:\n\
|
254 |
+
\ permEncoderChoicesList.append(\"%s: %s,\" % (\n _quoteAndEscape(encoderChoices[-1]['name']),\n\
|
255 |
+
\ pprint.pformat(encoderChoices, indent=2*_INDENT_STEP)))\n permEncoderChoicesStr\
|
256 |
+
\ = '\\n'.join(permEncoderChoicesList)\n permEncoderChoicesStr = _indentLines(permEncoderChoicesStr,\
|
257 |
+
\ 1,\n indentFirstLine=False)\n\n # Return\
|
258 |
+
\ results\n return (encoderSpecsStr, permEncoderChoicesStr)"
|
259 |
+
- "def shift(self, top=None, right=None, bottom=None, left=None):\n \"\"\"\
|
260 |
+
\n Shift/move the line strings from one or more image sides.\n\n \
|
261 |
+
\ Parameters\n ----------\n top : None or int, optional\n \
|
262 |
+
\ Amount of pixels by which to shift all bounding boxes from the\n \
|
263 |
+
\ top.\n\n right : None or int, optional\n Amount of pixels\
|
264 |
+
\ by which to shift all bounding boxes from the\n right.\n\n \
|
265 |
+
\ bottom : None or int, optional\n Amount of pixels by which to shift\
|
266 |
+
\ all bounding boxes from the\n bottom.\n\n left : None or int,\
|
267 |
+
\ optional\n Amount of pixels by which to shift all bounding boxes\
|
268 |
+
\ from the\n left.\n\n Returns\n -------\n imgaug.augmentables.lines.LineStringsOnImage\n\
|
269 |
+
\ Shifted line strings.\n\n \"\"\"\n lss_new = [ls.shift(top=top,\
|
270 |
+
\ right=right, bottom=bottom, left=left)\n for ls in self.line_strings]\n\
|
271 |
+
\ return LineStringsOnImage(lss_new, shape=self.shape)"
|
272 |
+
- "def cross_entropy_reward_loss(logits, actions, rewards, name=None):\n \"\"\
|
273 |
+
\"Calculate the loss for Policy Gradient Network.\n\n Parameters\n ----------\n\
|
274 |
+
\ logits : tensor\n The network outputs without softmax. This function\
|
275 |
+
\ implements softmax inside.\n actions : tensor or placeholder\n The\
|
276 |
+
\ agent actions.\n rewards : tensor or placeholder\n The rewards.\n\n\
|
277 |
+
\ Returns\n --------\n Tensor\n The TensorFlow loss function.\n\
|
278 |
+
\n Examples\n ----------\n >>> states_batch_pl = tf.placeholder(tf.float32,\
|
279 |
+
\ shape=[None, D])\n >>> network = InputLayer(states_batch_pl, name='input')\n\
|
280 |
+
\ >>> network = DenseLayer(network, n_units=H, act=tf.nn.relu, name='relu1')\n\
|
281 |
+
\ >>> network = DenseLayer(network, n_units=3, name='out')\n >>> probs =\
|
282 |
+
\ network.outputs\n >>> sampling_prob = tf.nn.softmax(probs)\n >>> actions_batch_pl\
|
283 |
+
\ = tf.placeholder(tf.int32, shape=[None])\n >>> discount_rewards_batch_pl\
|
284 |
+
\ = tf.placeholder(tf.float32, shape=[None])\n >>> loss = tl.rein.cross_entropy_reward_loss(probs,\
|
285 |
+
\ actions_batch_pl, discount_rewards_batch_pl)\n >>> train_op = tf.train.RMSPropOptimizer(learning_rate,\
|
286 |
+
\ decay_rate).minimize(loss)\n\n \"\"\"\n cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=actions,\
|
287 |
+
\ logits=logits, name=name)\n\n return tf.reduce_sum(tf.multiply(cross_entropy,\
|
288 |
+
\ rewards))"
|
289 |
+
- source_sentence: "Translate an index into coordinates, using the given coordinate\
|
290 |
+
\ system.\n\n Similar to ``numpy.unravel_index``.\n\n :param index: (int) The\
|
291 |
+
\ index of the point. The coordinates are expressed as a \n single index\
|
292 |
+
\ by using the dimensions as a mixed radix definition. For \n example,\
|
293 |
+
\ in dimensions 42x10, the point [1, 4] is index \n 1*420 + 4*10 = 460.\n\
|
294 |
+
\n :param dimensions (list of ints) The coordinate system.\n\n :returns: (list)\
|
295 |
+
\ of coordinates of length ``len(dimensions)``."
|
296 |
+
sentences:
|
297 |
+
- "def coordinatesFromIndex(index, dimensions):\n \"\"\"\n Translate an index\
|
298 |
+
\ into coordinates, using the given coordinate system.\n\n Similar to ``numpy.unravel_index``.\n\
|
299 |
+
\n :param index: (int) The index of the point. The coordinates are expressed\
|
300 |
+
\ as a \n single index by using the dimensions as a mixed radix definition.\
|
301 |
+
\ For \n example, in dimensions 42x10, the point [1, 4] is index \n \
|
302 |
+
\ 1*420 + 4*10 = 460.\n\n :param dimensions (list of ints) The coordinate\
|
303 |
+
\ system.\n\n :returns: (list) of coordinates of length ``len(dimensions)``.\n\
|
304 |
+
\ \"\"\"\n coordinates = [0] * len(dimensions)\n\n shifted = index\n for i\
|
305 |
+
\ in xrange(len(dimensions) - 1, 0, -1):\n coordinates[i] = shifted % dimensions[i]\n\
|
306 |
+
\ shifted = shifted / dimensions[i]\n\n coordinates[0] = shifted\n\n return\
|
307 |
+
\ coordinates"
|
308 |
+
- "def step(self, observation, **extra_feed):\n \"\"\"\n Compute next\
|
309 |
+
\ action(s) given the observation(s)\n\n Parameters:\n ----------\n\
|
310 |
+
\n observation observation data (either single or a batch)\n\n \
|
311 |
+
\ **extra_feed additional data such as state or mask (names of the arguments\
|
312 |
+
\ should match the ones in constructor, see __init__)\n\n Returns:\n \
|
313 |
+
\ -------\n (action, value estimate, next state, negative log likelihood\
|
314 |
+
\ of the action under current policy parameters) tuple\n \"\"\"\n\n \
|
315 |
+
\ a, v, state, neglogp = self._evaluate([self.action, self.vf, self.state,\
|
316 |
+
\ self.neglogp], observation, **extra_feed)\n if state.size == 0:\n \
|
317 |
+
\ state = None\n return a, v, state, neglogp"
|
318 |
+
- "def pretty_eta(seconds_left):\n \"\"\"Print the number of seconds in human\
|
319 |
+
\ readable format.\n\n Examples:\n 2 days\n 2 hours and 37 minutes\n\
|
320 |
+
\ less than a minute\n\n Paramters\n ---------\n seconds_left: int\n\
|
321 |
+
\ Number of seconds to be converted to the ETA\n Returns\n -------\n\
|
322 |
+
\ eta: str\n String representing the pretty ETA.\n \"\"\"\n minutes_left\
|
323 |
+
\ = seconds_left // 60\n seconds_left %= 60\n hours_left = minutes_left\
|
324 |
+
\ // 60\n minutes_left %= 60\n days_left = hours_left // 24\n hours_left\
|
325 |
+
\ %= 24\n\n def helper(cnt, name):\n return \"{} {}{}\".format(str(cnt),\
|
326 |
+
\ name, ('s' if cnt > 1 else ''))\n\n if days_left > 0:\n msg = helper(days_left,\
|
327 |
+
\ 'day')\n if hours_left > 0:\n msg += ' and ' + helper(hours_left,\
|
328 |
+
\ 'hour')\n return msg\n if hours_left > 0:\n msg = helper(hours_left,\
|
329 |
+
\ 'hour')\n if minutes_left > 0:\n msg += ' and ' + helper(minutes_left,\
|
330 |
+
\ 'minute')\n return msg\n if minutes_left > 0:\n return helper(minutes_left,\
|
331 |
+
\ 'minute')\n return 'less than a minute'"
|
332 |
+
- source_sentence: Validates control dictionary for the experiment context
|
333 |
+
sentences:
|
334 |
+
- "def load_file_list(path=None, regx='\\.jpg', printable=True, keep_prefix=False):\n\
|
335 |
+
\ r\"\"\"Return a file list in a folder by given a path and regular expression.\n\
|
336 |
+
\n Parameters\n ----------\n path : str or None\n A folder path,\
|
337 |
+
\ if `None`, use the current directory.\n regx : str\n The regx of file\
|
338 |
+
\ name.\n printable : boolean\n Whether to print the files infomation.\n\
|
339 |
+
\ keep_prefix : boolean\n Whether to keep path in the file name.\n\n\
|
340 |
+
\ Examples\n ----------\n >>> file_list = tl.files.load_file_list(path=None,\
|
341 |
+
\ regx='w1pre_[0-9]+\\.(npz)')\n\n \"\"\"\n if path is None:\n path\
|
342 |
+
\ = os.getcwd()\n file_list = os.listdir(path)\n return_list = []\n for\
|
343 |
+
\ _, f in enumerate(file_list):\n if re.search(regx, f):\n return_list.append(f)\n\
|
344 |
+
\ # return_list.sort()\n if keep_prefix:\n for i, f in enumerate(return_list):\n\
|
345 |
+
\ return_list[i] = os.path.join(path, f)\n\n if printable:\n \
|
346 |
+
\ logging.info('Match file list = %s' % return_list)\n logging.info('Number\
|
347 |
+
\ of files = %d' % len(return_list))\n return return_list"
|
348 |
+
- "def getCompletingSwarms(self):\n \"\"\"Return the list of all completing swarms.\n\
|
349 |
+
\n Parameters:\n ---------------------------------------------------------------------\n\
|
350 |
+
\ retval: list of active swarm Ids\n \"\"\"\n swarmIds = []\n for\
|
351 |
+
\ swarmId, info in self._state['swarms'].iteritems():\n if info['status']\
|
352 |
+
\ == 'completing':\n swarmIds.append(swarmId)\n\n return swarmIds"
|
353 |
+
- "def __validateExperimentControl(self, control):\n \"\"\" Validates control\
|
354 |
+
\ dictionary for the experiment context\"\"\"\n # Validate task list\n taskList\
|
355 |
+
\ = control.get('tasks', None)\n if taskList is not None:\n taskLabelsList\
|
356 |
+
\ = []\n\n for task in taskList:\n validateOpfJsonValue(task, \"opfTaskSchema.json\"\
|
357 |
+
)\n validateOpfJsonValue(task['taskControl'], \"opfTaskControlSchema.json\"\
|
358 |
+
)\n\n taskLabel = task['taskLabel']\n\n assert isinstance(taskLabel,\
|
359 |
+
\ types.StringTypes), \\\n \"taskLabel type: %r\" % type(taskLabel)\n\
|
360 |
+
\ assert len(taskLabel) > 0, \"empty string taskLabel not is allowed\"\n\
|
361 |
+
\n taskLabelsList.append(taskLabel.lower())\n\n taskLabelDuplicates\
|
362 |
+
\ = filter(lambda x: taskLabelsList.count(x) > 1,\n \
|
363 |
+
\ taskLabelsList)\n assert len(taskLabelDuplicates) == 0, \\\n \
|
364 |
+
\ \"Duplcate task labels are not allowed: %s\" % taskLabelDuplicates\n\
|
365 |
+
\n return"
|
366 |
+
pipeline_tag: sentence-similarity
|
367 |
+
library_name: sentence-transformers
|
368 |
+
---
|
369 |
+
|
370 |
+
# SentenceTransformer based on answerdotai/ModernBERT-base
|
371 |
+
|
372 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the code_search_net dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
373 |
+
|
374 |
+
## Model Details
|
375 |
+
|
376 |
+
### Model Description
|
377 |
+
- **Model Type:** Sentence Transformer
|
378 |
+
- **Base model:** [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) <!-- at revision 8949b909ec900327062f0ebf497f51aef5e6f0c8 -->
|
379 |
+
- **Maximum Sequence Length:** 4096 tokens
|
380 |
+
- **Output Dimensionality:** 768 dimensions
|
381 |
+
- **Similarity Function:** Cosine Similarity
|
382 |
+
- **Training Dataset:**
|
383 |
+
- code_search_net
|
384 |
+
<!-- - **Language:** Unknown -->
|
385 |
+
<!-- - **License:** Unknown -->
|
386 |
+
|
387 |
+
### Model Sources
|
388 |
+
|
389 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
390 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
391 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
392 |
+
|
393 |
+
### Full Model Architecture
|
394 |
+
|
395 |
+
```
|
396 |
+
SentenceTransformer(
|
397 |
+
(0): Transformer({'max_seq_length': 4096, 'do_lower_case': False}) with Transformer model: ModernBertModel
|
398 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
399 |
+
)
|
400 |
+
```
|
401 |
+
|
402 |
+
## Usage
|
403 |
+
|
404 |
+
### Direct Usage (Sentence Transformers)
|
405 |
+
|
406 |
+
First install the Sentence Transformers library:
|
407 |
+
|
408 |
+
```bash
|
409 |
+
pip install -U sentence-transformers
|
410 |
+
```
|
411 |
+
|
412 |
+
Then you can load this model and run inference.
|
413 |
+
```python
|
414 |
+
from sentence_transformers import SentenceTransformer
|
415 |
+
|
416 |
+
# Download from the 🤗 Hub
|
417 |
+
model = SentenceTransformer("juanwisz/modernbert-python-code-retrieval")
|
418 |
+
# Run inference
|
419 |
+
sentences = [
|
420 |
+
'Validates control dictionary for the experiment context',
|
421 |
+
'def __validateExperimentControl(self, control):\n """ Validates control dictionary for the experiment context"""\n # Validate task list\n taskList = control.get(\'tasks\', None)\n if taskList is not None:\n taskLabelsList = []\n\n for task in taskList:\n validateOpfJsonValue(task, "opfTaskSchema.json")\n validateOpfJsonValue(task[\'taskControl\'], "opfTaskControlSchema.json")\n\n taskLabel = task[\'taskLabel\']\n\n assert isinstance(taskLabel, types.StringTypes), \\\n "taskLabel type: %r" % type(taskLabel)\n assert len(taskLabel) > 0, "empty string taskLabel not is allowed"\n\n taskLabelsList.append(taskLabel.lower())\n\n taskLabelDuplicates = filter(lambda x: taskLabelsList.count(x) > 1,\n taskLabelsList)\n assert len(taskLabelDuplicates) == 0, \\\n "Duplcate task labels are not allowed: %s" % taskLabelDuplicates\n\n return',
|
422 |
+
'def load_file_list(path=None, regx=\'\\.jpg\', printable=True, keep_prefix=False):\n r"""Return a file list in a folder by given a path and regular expression.\n\n Parameters\n ----------\n path : str or None\n A folder path, if `None`, use the current directory.\n regx : str\n The regx of file name.\n printable : boolean\n Whether to print the files infomation.\n keep_prefix : boolean\n Whether to keep path in the file name.\n\n Examples\n ----------\n >>> file_list = tl.files.load_file_list(path=None, regx=\'w1pre_[0-9]+\\.(npz)\')\n\n """\n if path is None:\n path = os.getcwd()\n file_list = os.listdir(path)\n return_list = []\n for _, f in enumerate(file_list):\n if re.search(regx, f):\n return_list.append(f)\n # return_list.sort()\n if keep_prefix:\n for i, f in enumerate(return_list):\n return_list[i] = os.path.join(path, f)\n\n if printable:\n logging.info(\'Match file list = %s\' % return_list)\n logging.info(\'Number of files = %d\' % len(return_list))\n return return_list',
|
423 |
+
]
|
424 |
+
embeddings = model.encode(sentences)
|
425 |
+
print(embeddings.shape)
|
426 |
+
# [3, 768]
|
427 |
+
|
428 |
+
# Get the similarity scores for the embeddings
|
429 |
+
similarities = model.similarity(embeddings, embeddings)
|
430 |
+
print(similarities.shape)
|
431 |
+
# [3, 3]
|
432 |
+
```
|
433 |
+
|
434 |
+
<!--
|
435 |
+
### Direct Usage (Transformers)
|
436 |
+
|
437 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
438 |
+
|
439 |
+
</details>
|
440 |
+
-->
|
441 |
+
|
442 |
+
<!--
|
443 |
+
### Downstream Usage (Sentence Transformers)
|
444 |
+
|
445 |
+
You can finetune this model on your own dataset.
|
446 |
+
|
447 |
+
<details><summary>Click to expand</summary>
|
448 |
+
|
449 |
+
</details>
|
450 |
+
-->
|
451 |
+
|
452 |
+
<!--
|
453 |
+
### Out-of-Scope Use
|
454 |
+
|
455 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
456 |
+
-->
|
457 |
+
|
458 |
+
<!--
|
459 |
+
## Bias, Risks and Limitations
|
460 |
+
|
461 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
462 |
+
-->
|
463 |
+
|
464 |
+
<!--
|
465 |
+
### Recommendations
|
466 |
+
|
467 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
468 |
+
-->
|
469 |
+
|
470 |
+
## Training Details
|
471 |
+
|
472 |
+
### Training Dataset
|
473 |
+
|
474 |
+
#### code_search_net
|
475 |
+
|
476 |
+
* Dataset: code_search_net
|
477 |
+
* Size: 412,178 training samples
|
478 |
+
* Columns: <code>query</code> and <code>positive</code>
|
479 |
+
* Approximate statistics based on the first 1000 samples:
|
480 |
+
| | query | positive |
|
481 |
+
|:--------|:------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|
|
482 |
+
| type | string | string |
|
483 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 73.72 tokens</li><li>max: 2258 tokens</li></ul> | <ul><li>min: 46 tokens</li><li>mean: 300.87 tokens</li><li>max: 3119 tokens</li></ul> |
|
484 |
+
* Samples:
|
485 |
+
| query | positive |
|
486 |
+
|:------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
487 |
+
| <code>Extracts the list of arguments that start with any of the specified prefix values</code> | <code>def findArgs(args, prefixes):<br> """<br> Extracts the list of arguments that start with any of the specified prefix values<br> """<br> return list([<br> arg for arg in args<br> if len([p for p in prefixes if arg.lower().startswith(p.lower())]) > 0<br> ])</code> |
|
488 |
+
| <code>Removes any arguments in the supplied list that are contained in the specified blacklist</code> | <code>def stripArgs(args, blacklist):<br> """<br> Removes any arguments in the supplied list that are contained in the specified blacklist<br> """<br> blacklist = [b.lower() for b in blacklist]<br> return list([arg for arg in args if arg.lower() not in blacklist])</code> |
|
489 |
+
| <code>Executes a child process and captures its output</code> | <code>def capture(command, input=None, cwd=None, shell=False, raiseOnError=False):<br> """<br> Executes a child process and captures its output<br> """<br> <br> # Attempt to execute the child process<br> proc = subprocess.Popen(command, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=cwd, shell=shell, universal_newlines=True)<br> (stdout, stderr) = proc.communicate(input)<br> <br> # If the child process failed and we were asked to raise an exception, do so<br> if raiseOnError == True and proc.returncode != 0:<br> raise Exception(<br> 'child process ' + str(command) +<br> ' failed with exit code ' + str(proc.returncode) +<br> '\nstdout: "' + stdout + '"' +<br> '\nstderr: "' + stderr + '"'<br> )<br> <br> return CommandOutput(proc.returncode, stdout, stderr)</code> |
|
490 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
491 |
+
```json
|
492 |
+
{
|
493 |
+
"scale": 20.0,
|
494 |
+
"similarity_fct": "cos_sim"
|
495 |
+
}
|
496 |
+
```
|
497 |
+
|
498 |
+
### Evaluation Dataset
|
499 |
+
|
500 |
+
#### code_search_net
|
501 |
+
|
502 |
+
* Dataset: code_search_net
|
503 |
+
* Size: 23,107 evaluation samples
|
504 |
+
* Columns: <code>query</code> and <code>positive</code>
|
505 |
+
* Approximate statistics based on the first 1000 samples:
|
506 |
+
| | query | positive |
|
507 |
+
|:--------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
|
508 |
+
| type | string | string |
|
509 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 168.27 tokens</li><li>max: 2118 tokens</li></ul> | <ul><li>min: 48 tokens</li><li>mean: 467.9 tokens</li><li>max: 4096 tokens</li></ul> |
|
510 |
+
* Samples:
|
511 |
+
| query | positive |
|
512 |
+
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
513 |
+
| <code>Train a deepq model.<br><br> Parameters<br> -------<br> env: gym.Env<br> environment to train on<br> network: string or a function<br> neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models<br> (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which<br> will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)<br> seed: int or None<br> prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.<br> lr: float<br> learning rate for adam optimizer<br> total_timesteps: int<br> number of env steps to optimizer for<br> buffer_size: int<br> size of the replay buffer<br> exploration_fraction: float<br> fraction of entire training period over which the exploration rate is annealed<br> exploration_final_eps: float<br> final value of ra...</code> | <code>def learn(env,<br> network,<br> seed=None,<br> lr=5e-4,<br> total_timesteps=100000,<br> buffer_size=50000,<br> exploration_fraction=0.1,<br> exploration_final_eps=0.02,<br> train_freq=1,<br> batch_size=32,<br> print_freq=100,<br> checkpoint_freq=10000,<br> checkpoint_path=None,<br> learning_starts=1000,<br> gamma=1.0,<br> target_network_update_freq=500,<br> prioritized_replay=False,<br> prioritized_replay_alpha=0.6,<br> prioritized_replay_beta0=0.4,<br> prioritized_replay_beta_iters=None,<br> prioritized_replay_eps=1e-6,<br> param_noise=False,<br> callback=None,<br> load_path=None,<br> **network_kwargs<br> ):<br> """Train a deepq model.<br><br> Parameters<br> -------<br> env: gym.Env<br> environment to train on<br> network: string or a function<br> neural network to use as a q function approximator. If string, has to be one of the ...</code> |
|
514 |
+
| <code>Save model to a pickle located at `path`</code> | <code>def save_act(self, path=None):<br> """Save model to a pickle located at `path`"""<br> if path is None:<br> path = os.path.join(logger.get_dir(), "model.pkl")<br><br> with tempfile.TemporaryDirectory() as td:<br> save_variables(os.path.join(td, "model"))<br> arc_name = os.path.join(td, "packed.zip")<br> with zipfile.ZipFile(arc_name, 'w') as zipf:<br> for root, dirs, files in os.walk(td):<br> for fname in files:<br> file_path = os.path.join(root, fname)<br> if file_path != arc_name:<br> zipf.write(file_path, os.path.relpath(file_path, td))<br> with open(arc_name, "rb") as f:<br> model_data = f.read()<br> with open(path, "wb") as f:<br> cloudpickle.dump((model_data, self._act_params), f)</code> |
|
515 |
+
| <code>CNN from Nature paper.</code> | <code>def nature_cnn(unscaled_images, **conv_kwargs):<br> """<br> CNN from Nature paper.<br> """<br> scaled_images = tf.cast(unscaled_images, tf.float32) / 255.<br> activ = tf.nn.relu<br> h = activ(conv(scaled_images, 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2),<br> **conv_kwargs))<br> h2 = activ(conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2), **conv_kwargs))<br> h3 = activ(conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2), **conv_kwargs))<br> h3 = conv_to_fc(h3)<br> return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2)))</code> |
|
516 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
517 |
+
```json
|
518 |
+
{
|
519 |
+
"scale": 20.0,
|
520 |
+
"similarity_fct": "cos_sim"
|
521 |
+
}
|
522 |
+
```
|
523 |
+
|
524 |
+
### Training Hyperparameters
|
525 |
+
#### Non-Default Hyperparameters
|
526 |
+
|
527 |
+
- `eval_strategy`: epoch
|
528 |
+
- `per_device_train_batch_size`: 4
|
529 |
+
- `gradient_accumulation_steps`: 4
|
530 |
+
- `learning_rate`: 2e-05
|
531 |
+
- `num_train_epochs`: 10
|
532 |
+
- `warmup_steps`: 1000
|
533 |
+
- `fp16`: True
|
534 |
+
|
535 |
+
#### All Hyperparameters
|
536 |
+
<details><summary>Click to expand</summary>
|
537 |
+
|
538 |
+
- `overwrite_output_dir`: False
|
539 |
+
- `do_predict`: False
|
540 |
+
- `eval_strategy`: epoch
|
541 |
+
- `prediction_loss_only`: True
|
542 |
+
- `per_device_train_batch_size`: 4
|
543 |
+
- `per_device_eval_batch_size`: 8
|
544 |
+
- `per_gpu_train_batch_size`: None
|
545 |
+
- `per_gpu_eval_batch_size`: None
|
546 |
+
- `gradient_accumulation_steps`: 4
|
547 |
+
- `eval_accumulation_steps`: None
|
548 |
+
- `torch_empty_cache_steps`: None
|
549 |
+
- `learning_rate`: 2e-05
|
550 |
+
- `weight_decay`: 0.0
|
551 |
+
- `adam_beta1`: 0.9
|
552 |
+
- `adam_beta2`: 0.999
|
553 |
+
- `adam_epsilon`: 1e-08
|
554 |
+
- `max_grad_norm`: 1.0
|
555 |
+
- `num_train_epochs`: 10
|
556 |
+
- `max_steps`: -1
|
557 |
+
- `lr_scheduler_type`: linear
|
558 |
+
- `lr_scheduler_kwargs`: {}
|
559 |
+
- `warmup_ratio`: 0.0
|
560 |
+
- `warmup_steps`: 1000
|
561 |
+
- `log_level`: passive
|
562 |
+
- `log_level_replica`: warning
|
563 |
+
- `log_on_each_node`: True
|
564 |
+
- `logging_nan_inf_filter`: True
|
565 |
+
- `save_safetensors`: True
|
566 |
+
- `save_on_each_node`: False
|
567 |
+
- `save_only_model`: False
|
568 |
+
- `restore_callback_states_from_checkpoint`: False
|
569 |
+
- `no_cuda`: False
|
570 |
+
- `use_cpu`: False
|
571 |
+
- `use_mps_device`: False
|
572 |
+
- `seed`: 42
|
573 |
+
- `data_seed`: None
|
574 |
+
- `jit_mode_eval`: False
|
575 |
+
- `use_ipex`: False
|
576 |
+
- `bf16`: False
|
577 |
+
- `fp16`: True
|
578 |
+
- `fp16_opt_level`: O1
|
579 |
+
- `half_precision_backend`: auto
|
580 |
+
- `bf16_full_eval`: False
|
581 |
+
- `fp16_full_eval`: False
|
582 |
+
- `tf32`: None
|
583 |
+
- `local_rank`: 0
|
584 |
+
- `ddp_backend`: None
|
585 |
+
- `tpu_num_cores`: None
|
586 |
+
- `tpu_metrics_debug`: False
|
587 |
+
- `debug`: []
|
588 |
+
- `dataloader_drop_last`: False
|
589 |
+
- `dataloader_num_workers`: 0
|
590 |
+
- `dataloader_prefetch_factor`: None
|
591 |
+
- `past_index`: -1
|
592 |
+
- `disable_tqdm`: False
|
593 |
+
- `remove_unused_columns`: True
|
594 |
+
- `label_names`: None
|
595 |
+
- `load_best_model_at_end`: False
|
596 |
+
- `ignore_data_skip`: False
|
597 |
+
- `fsdp`: []
|
598 |
+
- `fsdp_min_num_params`: 0
|
599 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
600 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
601 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
602 |
+
- `deepspeed`: None
|
603 |
+
- `label_smoothing_factor`: 0.0
|
604 |
+
- `optim`: adamw_torch
|
605 |
+
- `optim_args`: None
|
606 |
+
- `adafactor`: False
|
607 |
+
- `group_by_length`: False
|
608 |
+
- `length_column_name`: length
|
609 |
+
- `ddp_find_unused_parameters`: None
|
610 |
+
- `ddp_bucket_cap_mb`: None
|
611 |
+
- `ddp_broadcast_buffers`: False
|
612 |
+
- `dataloader_pin_memory`: True
|
613 |
+
- `dataloader_persistent_workers`: False
|
614 |
+
- `skip_memory_metrics`: True
|
615 |
+
- `use_legacy_prediction_loop`: False
|
616 |
+
- `push_to_hub`: False
|
617 |
+
- `resume_from_checkpoint`: None
|
618 |
+
- `hub_model_id`: None
|
619 |
+
- `hub_strategy`: every_save
|
620 |
+
- `hub_private_repo`: None
|
621 |
+
- `hub_always_push`: False
|
622 |
+
- `gradient_checkpointing`: False
|
623 |
+
- `gradient_checkpointing_kwargs`: None
|
624 |
+
- `include_inputs_for_metrics`: False
|
625 |
+
- `include_for_metrics`: []
|
626 |
+
- `eval_do_concat_batches`: True
|
627 |
+
- `fp16_backend`: auto
|
628 |
+
- `push_to_hub_model_id`: None
|
629 |
+
- `push_to_hub_organization`: None
|
630 |
+
- `mp_parameters`:
|
631 |
+
- `auto_find_batch_size`: False
|
632 |
+
- `full_determinism`: False
|
633 |
+
- `torchdynamo`: None
|
634 |
+
- `ray_scope`: last
|
635 |
+
- `ddp_timeout`: 1800
|
636 |
+
- `torch_compile`: False
|
637 |
+
- `torch_compile_backend`: None
|
638 |
+
- `torch_compile_mode`: None
|
639 |
+
- `dispatch_batches`: None
|
640 |
+
- `split_batches`: None
|
641 |
+
- `include_tokens_per_second`: False
|
642 |
+
- `include_num_input_tokens_seen`: False
|
643 |
+
- `neftune_noise_alpha`: None
|
644 |
+
- `optim_target_modules`: None
|
645 |
+
- `batch_eval_metrics`: False
|
646 |
+
- `eval_on_start`: False
|
647 |
+
- `use_liger_kernel`: False
|
648 |
+
- `eval_use_gather_object`: False
|
649 |
+
- `average_tokens_across_devices`: False
|
650 |
+
- `prompts`: None
|
651 |
+
- `batch_sampler`: batch_sampler
|
652 |
+
- `multi_dataset_batch_sampler`: proportional
|
653 |
+
|
654 |
+
</details>
|
655 |
+
|
656 |
+
### Training Logs
|
657 |
+
<details><summary>Click to expand</summary>
|
658 |
+
|
659 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
660 |
+
|:------:|:-----:|:-------------:|:---------------:|
|
661 |
+
| 0.0078 | 200 | 0.634 | - |
|
662 |
+
| 0.0155 | 400 | 0.0046 | - |
|
663 |
+
| 0.0233 | 600 | 0.0009 | - |
|
664 |
+
| 0.0311 | 800 | 0.0004 | - |
|
665 |
+
| 0.0388 | 1000 | 0.0001 | - |
|
666 |
+
| 0.0466 | 1200 | 0.0002 | - |
|
667 |
+
| 0.0543 | 1400 | 0.0001 | - |
|
668 |
+
| 0.0621 | 1600 | 0.0001 | - |
|
669 |
+
| 0.0699 | 1800 | 0.0001 | - |
|
670 |
+
| 0.0776 | 2000 | 0.0 | - |
|
671 |
+
| 0.0854 | 2200 | 0.0 | - |
|
672 |
+
| 0.0932 | 2400 | 0.0 | - |
|
673 |
+
| 0.1009 | 2600 | 0.0 | - |
|
674 |
+
| 0.1087 | 2800 | 0.0005 | - |
|
675 |
+
| 0.1165 | 3000 | 0.0005 | - |
|
676 |
+
| 0.1242 | 3200 | 0.0002 | - |
|
677 |
+
| 0.1320 | 3400 | 0.0 | - |
|
678 |
+
| 0.1397 | 3600 | 0.0 | - |
|
679 |
+
| 0.1475 | 3800 | 0.0 | - |
|
680 |
+
| 0.1553 | 4000 | 0.0001 | - |
|
681 |
+
| 0.1630 | 4200 | 0.0 | - |
|
682 |
+
| 0.1708 | 4400 | 0.0001 | - |
|
683 |
+
| 0.1786 | 4600 | 0.0001 | - |
|
684 |
+
| 0.1863 | 4800 | 0.0 | - |
|
685 |
+
| 0.1941 | 5000 | 0.0 | - |
|
686 |
+
| 0.2019 | 5200 | 0.0 | - |
|
687 |
+
| 0.2096 | 5400 | 0.0 | - |
|
688 |
+
| 0.2174 | 5600 | 0.0 | - |
|
689 |
+
| 0.2251 | 5800 | 0.0 | - |
|
690 |
+
| 0.2329 | 6000 | 0.0004 | - |
|
691 |
+
| 0.2407 | 6200 | 0.0 | - |
|
692 |
+
| 0.2484 | 6400 | 0.0001 | - |
|
693 |
+
| 0.2562 | 6600 | 0.0 | - |
|
694 |
+
| 0.2640 | 6800 | 0.0 | - |
|
695 |
+
| 0.2717 | 7000 | 0.0 | - |
|
696 |
+
| 0.2795 | 7200 | 0.0 | - |
|
697 |
+
| 0.2873 | 7400 | 0.0 | - |
|
698 |
+
| 0.2950 | 7600 | 0.0 | - |
|
699 |
+
| 0.3028 | 7800 | 0.0 | - |
|
700 |
+
| 0.3105 | 8000 | 0.0 | - |
|
701 |
+
| 0.3183 | 8200 | 0.0 | - |
|
702 |
+
| 0.3261 | 8400 | 0.0004 | - |
|
703 |
+
| 0.3338 | 8600 | 0.0 | - |
|
704 |
+
| 0.3416 | 8800 | 0.0 | - |
|
705 |
+
| 0.3494 | 9000 | 0.0 | - |
|
706 |
+
| 0.3571 | 9200 | 0.0 | - |
|
707 |
+
| 0.3649 | 9400 | 0.0 | - |
|
708 |
+
| 0.3727 | 9600 | 0.0 | - |
|
709 |
+
| 0.3804 | 9800 | 0.0 | - |
|
710 |
+
| 0.3882 | 10000 | 0.0 | - |
|
711 |
+
| 0.3959 | 10200 | 0.0 | - |
|
712 |
+
| 0.4037 | 10400 | 0.0 | - |
|
713 |
+
| 0.4115 | 10600 | 0.0 | - |
|
714 |
+
| 0.4192 | 10800 | 0.0 | - |
|
715 |
+
| 0.4270 | 11000 | 0.0 | - |
|
716 |
+
| 0.4348 | 11200 | 0.0 | - |
|
717 |
+
| 0.4425 | 11400 | 0.0 | - |
|
718 |
+
| 0.4503 | 11600 | 0.0 | - |
|
719 |
+
| 0.4581 | 11800 | 0.0 | - |
|
720 |
+
| 0.4658 | 12000 | 0.0 | - |
|
721 |
+
| 0.4736 | 12200 | 0.0 | - |
|
722 |
+
| 0.4813 | 12400 | 0.0 | - |
|
723 |
+
| 0.4891 | 12600 | 0.0005 | - |
|
724 |
+
| 0.4969 | 12800 | 0.0 | - |
|
725 |
+
| 0.5046 | 13000 | 0.0 | - |
|
726 |
+
| 0.5124 | 13200 | 0.0001 | - |
|
727 |
+
| 0.5202 | 13400 | 0.0 | - |
|
728 |
+
| 0.5279 | 13600 | 0.0 | - |
|
729 |
+
| 0.5357 | 13800 | 0.0 | - |
|
730 |
+
| 0.5435 | 14000 | 0.0 | - |
|
731 |
+
| 0.5512 | 14200 | 0.0 | - |
|
732 |
+
| 0.5590 | 14400 | 0.0004 | - |
|
733 |
+
| 0.5667 | 14600 | 0.0 | - |
|
734 |
+
| 0.5745 | 14800 | 0.0 | - |
|
735 |
+
| 0.5823 | 15000 | 0.0 | - |
|
736 |
+
| 0.5900 | 15200 | 0.0 | - |
|
737 |
+
| 0.5978 | 15400 | 0.0 | - |
|
738 |
+
| 0.6056 | 15600 | 0.0 | - |
|
739 |
+
| 0.6133 | 15800 | 0.0 | - |
|
740 |
+
| 0.6211 | 16000 | 0.0 | - |
|
741 |
+
| 0.6289 | 16200 | 0.0 | - |
|
742 |
+
| 0.6366 | 16400 | 0.0006 | - |
|
743 |
+
| 0.6444 | 16600 | 0.0 | - |
|
744 |
+
| 0.6521 | 16800 | 0.0005 | - |
|
745 |
+
| 0.6599 | 17000 | 0.0 | - |
|
746 |
+
| 0.6677 | 17200 | 0.0 | - |
|
747 |
+
| 0.6754 | 17400 | 0.0 | - |
|
748 |
+
| 0.6832 | 17600 | 0.0 | - |
|
749 |
+
| 0.6910 | 17800 | 0.0 | - |
|
750 |
+
| 0.6987 | 18000 | 0.0005 | - |
|
751 |
+
| 0.7065 | 18200 | 0.0001 | - |
|
752 |
+
| 0.7143 | 18400 | 0.0 | - |
|
753 |
+
| 0.7220 | 18600 | 0.0 | - |
|
754 |
+
| 0.7298 | 18800 | 0.0 | - |
|
755 |
+
| 0.7375 | 19000 | 0.0 | - |
|
756 |
+
| 0.7453 | 19200 | 0.0 | - |
|
757 |
+
| 0.7531 | 19400 | 0.0 | - |
|
758 |
+
| 0.7608 | 19600 | 0.0 | - |
|
759 |
+
| 0.7686 | 19800 | 0.0001 | - |
|
760 |
+
| 0.7764 | 20000 | 0.0 | - |
|
761 |
+
| 0.7841 | 20200 | 0.0 | - |
|
762 |
+
| 0.7919 | 20400 | 0.0 | - |
|
763 |
+
| 0.7997 | 20600 | 0.0004 | - |
|
764 |
+
| 0.8074 | 20800 | 0.0 | - |
|
765 |
+
| 0.8152 | 21000 | 0.0 | - |
|
766 |
+
| 0.8229 | 21200 | 0.0 | - |
|
767 |
+
| 0.8307 | 21400 | 0.0009 | - |
|
768 |
+
| 0.8385 | 21600 | 0.0 | - |
|
769 |
+
| 0.8462 | 21800 | 0.0 | - |
|
770 |
+
| 0.8540 | 22000 | 0.0 | - |
|
771 |
+
| 0.8618 | 22200 | 0.0 | - |
|
772 |
+
| 0.8695 | 22400 | 0.0002 | - |
|
773 |
+
| 0.8773 | 22600 | 0.0 | - |
|
774 |
+
| 0.8851 | 22800 | 0.0 | - |
|
775 |
+
| 0.8928 | 23000 | 0.0001 | - |
|
776 |
+
| 0.9006 | 23200 | 0.0 | - |
|
777 |
+
| 0.9083 | 23400 | 0.0 | - |
|
778 |
+
| 0.9161 | 23600 | 0.0 | - |
|
779 |
+
| 0.9239 | 23800 | 0.0 | - |
|
780 |
+
| 0.9316 | 24000 | 0.0 | - |
|
781 |
+
| 0.9394 | 24200 | 0.0 | - |
|
782 |
+
| 0.9472 | 24400 | 0.0 | - |
|
783 |
+
| 0.9549 | 24600 | 0.0 | - |
|
784 |
+
| 0.9627 | 24800 | 0.0 | - |
|
785 |
+
| 0.9704 | 25000 | 0.0 | - |
|
786 |
+
| 0.9782 | 25200 | 0.0 | - |
|
787 |
+
| 0.9860 | 25400 | 0.0 | - |
|
788 |
+
| 0.9937 | 25600 | 0.0 | - |
|
789 |
+
| 1.0 | 25762 | - | 0.0001 |
|
790 |
+
| 1.0015 | 25800 | 0.0005 | - |
|
791 |
+
| 1.0092 | 26000 | 0.0 | - |
|
792 |
+
| 1.0170 | 26200 | 0.0 | - |
|
793 |
+
| 1.0248 | 26400 | 0.0 | - |
|
794 |
+
| 1.0325 | 26600 | 0.0 | - |
|
795 |
+
| 1.0403 | 26800 | 0.0 | - |
|
796 |
+
| 1.0481 | 27000 | 0.0 | - |
|
797 |
+
| 1.0558 | 27200 | 0.0 | - |
|
798 |
+
| 1.0636 | 27400 | 0.0 | - |
|
799 |
+
| 1.0713 | 27600 | 0.0 | - |
|
800 |
+
| 1.0791 | 27800 | 0.0 | - |
|
801 |
+
| 1.0869 | 28000 | 0.0 | - |
|
802 |
+
| 1.0946 | 28200 | 0.0 | - |
|
803 |
+
| 1.1024 | 28400 | 0.0 | - |
|
804 |
+
| 1.1102 | 28600 | 0.0 | - |
|
805 |
+
| 1.1179 | 28800 | 0.0 | - |
|
806 |
+
| 1.1257 | 29000 | 0.0 | - |
|
807 |
+
| 1.1335 | 29200 | 0.0 | - |
|
808 |
+
| 1.1412 | 29400 | 0.0 | - |
|
809 |
+
| 1.1490 | 29600 | 0.0 | - |
|
810 |
+
| 1.1567 | 29800 | 0.0 | - |
|
811 |
+
| 1.1645 | 30000 | 0.0 | - |
|
812 |
+
| 1.1723 | 30200 | 0.0 | - |
|
813 |
+
| 1.1800 | 30400 | 0.0 | - |
|
814 |
+
| 1.1878 | 30600 | 0.0 | - |
|
815 |
+
| 1.1956 | 30800 | 0.0 | - |
|
816 |
+
| 1.2033 | 31000 | 0.0 | - |
|
817 |
+
| 1.2111 | 31200 | 0.0 | - |
|
818 |
+
| 1.2189 | 31400 | 0.0 | - |
|
819 |
+
| 1.2266 | 31600 | 0.0004 | - |
|
820 |
+
| 1.2344 | 31800 | 0.0004 | - |
|
821 |
+
| 1.2421 | 32000 | 0.0 | - |
|
822 |
+
| 1.2499 | 32200 | 0.0 | - |
|
823 |
+
| 1.2577 | 32400 | 0.0 | - |
|
824 |
+
| 1.2654 | 32600 | 0.0 | - |
|
825 |
+
| 1.2732 | 32800 | 0.0 | - |
|
826 |
+
| 1.2810 | 33000 | 0.0 | - |
|
827 |
+
| 1.2887 | 33200 | 0.0 | - |
|
828 |
+
| 1.2965 | 33400 | 0.0 | - |
|
829 |
+
| 1.3043 | 33600 | 0.0 | - |
|
830 |
+
| 1.3120 | 33800 | 0.0 | - |
|
831 |
+
| 1.3198 | 34000 | 0.0 | - |
|
832 |
+
| 1.3275 | 34200 | 0.0 | - |
|
833 |
+
| 1.3353 | 34400 | 0.0 | - |
|
834 |
+
| 1.3431 | 34600 | 0.0 | - |
|
835 |
+
| 1.3508 | 34800 | 0.0004 | - |
|
836 |
+
| 1.3586 | 35000 | 0.0005 | - |
|
837 |
+
| 1.3664 | 35200 | 0.0004 | - |
|
838 |
+
| 1.3741 | 35400 | 0.0011 | - |
|
839 |
+
| 1.3819 | 35600 | 0.0 | - |
|
840 |
+
| 1.3897 | 35800 | 0.0 | - |
|
841 |
+
| 1.3974 | 36000 | 0.0 | - |
|
842 |
+
| 1.4052 | 36200 | 0.0 | - |
|
843 |
+
| 1.4129 | 36400 | 0.0 | - |
|
844 |
+
| 1.4207 | 36600 | 0.0 | - |
|
845 |
+
| 1.4285 | 36800 | 0.0 | - |
|
846 |
+
| 1.4362 | 37000 | 0.0 | - |
|
847 |
+
| 1.4440 | 37200 | 0.0001 | - |
|
848 |
+
| 1.4518 | 37400 | 0.0 | - |
|
849 |
+
| 1.4595 | 37600 | 0.0 | - |
|
850 |
+
| 1.4673 | 37800 | 0.0 | - |
|
851 |
+
| 1.4751 | 38000 | 0.0 | - |
|
852 |
+
| 1.4828 | 38200 | 0.0004 | - |
|
853 |
+
| 1.4906 | 38400 | 0.0003 | - |
|
854 |
+
| 1.4983 | 38600 | 0.0 | - |
|
855 |
+
| 1.5061 | 38800 | 0.0 | - |
|
856 |
+
| 1.5139 | 39000 | 0.0 | - |
|
857 |
+
| 1.5216 | 39200 | 0.0 | - |
|
858 |
+
| 1.5294 | 39400 | 0.0004 | - |
|
859 |
+
| 1.5372 | 39600 | 0.0004 | - |
|
860 |
+
| 1.5449 | 39800 | 0.0 | - |
|
861 |
+
| 1.5527 | 40000 | 0.0 | - |
|
862 |
+
| 1.5605 | 40200 | 0.0 | - |
|
863 |
+
| 1.5682 | 40400 | 0.0 | - |
|
864 |
+
| 1.5760 | 40600 | 0.0009 | - |
|
865 |
+
| 1.5837 | 40800 | 0.0 | - |
|
866 |
+
| 1.5915 | 41000 | 0.0009 | - |
|
867 |
+
| 1.5993 | 41200 | 0.0 | - |
|
868 |
+
| 1.6070 | 41400 | 0.0 | - |
|
869 |
+
| 1.6148 | 41600 | 0.0 | - |
|
870 |
+
| 1.6226 | 41800 | 0.0 | - |
|
871 |
+
| 1.6303 | 42000 | 0.0 | - |
|
872 |
+
| 1.6381 | 42200 | 0.0 | - |
|
873 |
+
| 1.6459 | 42400 | 0.0 | - |
|
874 |
+
| 1.6536 | 42600 | 0.0 | - |
|
875 |
+
| 1.6614 | 42800 | 0.0 | - |
|
876 |
+
| 1.6691 | 43000 | 0.0 | - |
|
877 |
+
| 1.6769 | 43200 | 0.0 | - |
|
878 |
+
| 1.6847 | 43400 | 0.0 | - |
|
879 |
+
| 1.6924 | 43600 | 0.0 | - |
|
880 |
+
| 1.7002 | 43800 | 0.0 | - |
|
881 |
+
| 1.7080 | 44000 | 0.0 | - |
|
882 |
+
| 1.7157 | 44200 | 0.0 | - |
|
883 |
+
| 1.7235 | 44400 | 0.0 | - |
|
884 |
+
| 1.7313 | 44600 | 0.0 | - |
|
885 |
+
| 1.7390 | 44800 | 0.0 | - |
|
886 |
+
| 1.7468 | 45000 | 0.0 | - |
|
887 |
+
| 1.7545 | 45200 | 0.0 | - |
|
888 |
+
| 1.7623 | 45400 | 0.0 | - |
|
889 |
+
| 1.7701 | 45600 | 0.0 | - |
|
890 |
+
| 1.7778 | 45800 | 0.0 | - |
|
891 |
+
| 1.7856 | 46000 | 0.0 | - |
|
892 |
+
| 1.7934 | 46200 | 0.0 | - |
|
893 |
+
| 1.8011 | 46400 | 0.0 | - |
|
894 |
+
| 1.8089 | 46600 | 0.0 | - |
|
895 |
+
| 1.8167 | 46800 | 0.0 | - |
|
896 |
+
| 1.8244 | 47000 | 0.0 | - |
|
897 |
+
| 1.8322 | 47200 | 0.0 | - |
|
898 |
+
| 1.8399 | 47400 | 0.0 | - |
|
899 |
+
| 1.8477 | 47600 | 0.0 | - |
|
900 |
+
| 1.8555 | 47800 | 0.0004 | - |
|
901 |
+
| 1.8632 | 48000 | 0.0 | - |
|
902 |
+
| 1.8710 | 48200 | 0.0 | - |
|
903 |
+
| 1.8788 | 48400 | 0.0 | - |
|
904 |
+
| 1.8865 | 48600 | 0.0 | - |
|
905 |
+
| 1.8943 | 48800 | 0.0 | - |
|
906 |
+
| 1.9021 | 49000 | 0.0004 | - |
|
907 |
+
| 1.9098 | 49200 | 0.0 | - |
|
908 |
+
| 1.9176 | 49400 | 0.0 | - |
|
909 |
+
| 1.9253 | 49600 | 0.0004 | - |
|
910 |
+
| 1.9331 | 49800 | 0.0 | - |
|
911 |
+
| 1.9409 | 50000 | 0.0 | - |
|
912 |
+
| 1.9486 | 50200 | 0.0 | - |
|
913 |
+
| 1.9564 | 50400 | 0.0 | - |
|
914 |
+
| 1.9642 | 50600 | 0.0004 | - |
|
915 |
+
| 1.9719 | 50800 | 0.0 | - |
|
916 |
+
| 1.9797 | 51000 | 0.0 | - |
|
917 |
+
| 1.9875 | 51200 | 0.0 | - |
|
918 |
+
| 1.9952 | 51400 | 0.0004 | - |
|
919 |
+
| 2.0 | 51524 | - | 0.0001 |
|
920 |
+
| 2.0030 | 51600 | 0.0 | - |
|
921 |
+
| 2.0107 | 51800 | 0.0 | - |
|
922 |
+
| 2.0185 | 52000 | 0.0 | - |
|
923 |
+
| 2.0262 | 52200 | 0.0 | - |
|
924 |
+
| 2.0340 | 52400 | 0.0004 | - |
|
925 |
+
| 2.0418 | 52600 | 0.0004 | - |
|
926 |
+
| 2.0495 | 52800 | 0.0 | - |
|
927 |
+
| 2.0573 | 53000 | 0.0008 | - |
|
928 |
+
| 2.0651 | 53200 | 0.0 | - |
|
929 |
+
| 2.0728 | 53400 | 0.0 | - |
|
930 |
+
| 2.0806 | 53600 | 0.0 | - |
|
931 |
+
| 2.0883 | 53800 | 0.0 | - |
|
932 |
+
| 2.0961 | 54000 | 0.0 | - |
|
933 |
+
| 2.1039 | 54200 | 0.0 | - |
|
934 |
+
| 2.1116 | 54400 | 0.0 | - |
|
935 |
+
| 2.1194 | 54600 | 0.0 | - |
|
936 |
+
| 2.1272 | 54800 | 0.0 | - |
|
937 |
+
| 2.1349 | 55000 | 0.0 | - |
|
938 |
+
| 2.1427 | 55200 | 0.0 | - |
|
939 |
+
| 2.1505 | 55400 | 0.0 | - |
|
940 |
+
| 2.1582 | 55600 | 0.0 | - |
|
941 |
+
| 2.1660 | 55800 | 0.0 | - |
|
942 |
+
| 2.1737 | 56000 | 0.0 | - |
|
943 |
+
| 2.1815 | 56200 | 0.0 | - |
|
944 |
+
| 2.1893 | 56400 | 0.0 | - |
|
945 |
+
| 2.1970 | 56600 | 0.0 | - |
|
946 |
+
| 2.2048 | 56800 | 0.0 | - |
|
947 |
+
| 2.2126 | 57000 | 0.0 | - |
|
948 |
+
| 2.2203 | 57200 | 0.0 | - |
|
949 |
+
| 2.2281 | 57400 | 0.0 | - |
|
950 |
+
| 2.2359 | 57600 | 0.0 | - |
|
951 |
+
| 2.2436 | 57800 | 0.0 | - |
|
952 |
+
| 2.2514 | 58000 | 0.0004 | - |
|
953 |
+
| 2.2591 | 58200 | 0.0 | - |
|
954 |
+
| 2.2669 | 58400 | 0.0004 | - |
|
955 |
+
| 2.2747 | 58600 | 0.0 | - |
|
956 |
+
| 2.2824 | 58800 | 0.0 | - |
|
957 |
+
| 2.2902 | 59000 | 0.0 | - |
|
958 |
+
| 2.2980 | 59200 | 0.0 | - |
|
959 |
+
| 2.3057 | 59400 | 0.0 | - |
|
960 |
+
| 2.3135 | 59600 | 0.0 | - |
|
961 |
+
| 2.3213 | 59800 | 0.0004 | - |
|
962 |
+
| 2.3290 | 60000 | 0.0 | - |
|
963 |
+
| 2.3368 | 60200 | 0.0004 | - |
|
964 |
+
| 2.3445 | 60400 | 0.0 | - |
|
965 |
+
| 2.3523 | 60600 | 0.0 | - |
|
966 |
+
| 2.3601 | 60800 | 0.0 | - |
|
967 |
+
| 2.3678 | 61000 | 0.0 | - |
|
968 |
+
| 2.3756 | 61200 | 0.0 | - |
|
969 |
+
| 2.3834 | 61400 | 0.0 | - |
|
970 |
+
| 2.3911 | 61600 | 0.0 | - |
|
971 |
+
| 2.3989 | 61800 | 0.0 | - |
|
972 |
+
| 2.4067 | 62000 | 0.0005 | - |
|
973 |
+
| 2.4144 | 62200 | 0.0 | - |
|
974 |
+
| 2.4222 | 62400 | 0.0 | - |
|
975 |
+
| 2.4299 | 62600 | 0.0 | - |
|
976 |
+
| 2.4377 | 62800 | 0.0 | - |
|
977 |
+
| 2.4455 | 63000 | 0.0 | - |
|
978 |
+
| 2.4532 | 63200 | 0.0 | - |
|
979 |
+
| 2.4610 | 63400 | 0.0 | - |
|
980 |
+
| 2.4688 | 63600 | 0.0 | - |
|
981 |
+
| 2.4765 | 63800 | 0.0 | - |
|
982 |
+
| 2.4843 | 64000 | 0.0 | - |
|
983 |
+
| 2.4921 | 64200 | 0.0 | - |
|
984 |
+
| 2.4998 | 64400 | 0.0 | - |
|
985 |
+
| 2.5076 | 64600 | 0.0 | - |
|
986 |
+
| 2.5153 | 64800 | 0.0 | - |
|
987 |
+
| 2.5231 | 65000 | 0.0 | - |
|
988 |
+
| 2.5309 | 65200 | 0.0 | - |
|
989 |
+
| 2.5386 | 65400 | 0.0 | - |
|
990 |
+
| 2.5464 | 65600 | 0.0004 | - |
|
991 |
+
| 2.5542 | 65800 | 0.0 | - |
|
992 |
+
| 2.5619 | 66000 | 0.0 | - |
|
993 |
+
| 2.5697 | 66200 | 0.0 | - |
|
994 |
+
| 2.5775 | 66400 | 0.0 | - |
|
995 |
+
| 2.5852 | 66600 | 0.0 | - |
|
996 |
+
| 2.5930 | 66800 | 0.0 | - |
|
997 |
+
| 2.6007 | 67000 | 0.0 | - |
|
998 |
+
| 2.6085 | 67200 | 0.0 | - |
|
999 |
+
| 2.6163 | 67400 | 0.0 | - |
|
1000 |
+
| 2.6240 | 67600 | 0.0 | - |
|
1001 |
+
| 2.6318 | 67800 | 0.0 | - |
|
1002 |
+
| 2.6396 | 68000 | 0.0 | - |
|
1003 |
+
| 2.6473 | 68200 | 0.0 | - |
|
1004 |
+
| 2.6551 | 68400 | 0.0 | - |
|
1005 |
+
| 2.6629 | 68600 | 0.0 | - |
|
1006 |
+
| 2.6706 | 68800 | 0.0004 | - |
|
1007 |
+
| 2.6784 | 69000 | 0.0 | - |
|
1008 |
+
| 2.6861 | 69200 | 0.0 | - |
|
1009 |
+
| 2.6939 | 69400 | 0.0 | - |
|
1010 |
+
| 2.7017 | 69600 | 0.0004 | - |
|
1011 |
+
| 2.7094 | 69800 | 0.0004 | - |
|
1012 |
+
| 2.7172 | 70000 | 0.0 | - |
|
1013 |
+
| 2.7250 | 70200 | 0.0 | - |
|
1014 |
+
| 2.7327 | 70400 | 0.0 | - |
|
1015 |
+
| 2.7405 | 70600 | 0.0 | - |
|
1016 |
+
| 2.7483 | 70800 | 0.0 | - |
|
1017 |
+
| 2.7560 | 71000 | 0.0004 | - |
|
1018 |
+
| 2.7638 | 71200 | 0.0 | - |
|
1019 |
+
| 2.7715 | 71400 | 0.0 | - |
|
1020 |
+
| 2.7793 | 71600 | 0.0 | - |
|
1021 |
+
| 2.7871 | 71800 | 0.0 | - |
|
1022 |
+
| 2.7948 | 72000 | 0.0 | - |
|
1023 |
+
| 2.8026 | 72200 | 0.0 | - |
|
1024 |
+
| 2.8104 | 72400 | 0.0 | - |
|
1025 |
+
| 2.8181 | 72600 | 0.0 | - |
|
1026 |
+
| 2.8259 | 72800 | 0.0 | - |
|
1027 |
+
| 2.8337 | 73000 | 0.0004 | - |
|
1028 |
+
| 2.8414 | 73200 | 0.0 | - |
|
1029 |
+
| 2.8492 | 73400 | 0.0 | - |
|
1030 |
+
| 2.8569 | 73600 | 0.0 | - |
|
1031 |
+
| 2.8647 | 73800 | 0.0004 | - |
|
1032 |
+
| 2.8725 | 74000 | 0.0 | - |
|
1033 |
+
| 2.8802 | 74200 | 0.0 | - |
|
1034 |
+
| 2.8880 | 74400 | 0.0 | - |
|
1035 |
+
| 2.8958 | 74600 | 0.0 | - |
|
1036 |
+
| 2.9035 | 74800 | 0.0 | - |
|
1037 |
+
| 2.9113 | 75000 | 0.0 | - |
|
1038 |
+
| 2.9191 | 75200 | 0.0 | - |
|
1039 |
+
| 2.9268 | 75400 | 0.0004 | - |
|
1040 |
+
| 2.9346 | 75600 | 0.0 | - |
|
1041 |
+
| 2.9423 | 75800 | 0.0 | - |
|
1042 |
+
| 2.9501 | 76000 | 0.0 | - |
|
1043 |
+
| 2.9579 | 76200 | 0.0 | - |
|
1044 |
+
| 2.9656 | 76400 | 0.0 | - |
|
1045 |
+
| 2.9734 | 76600 | 0.0004 | - |
|
1046 |
+
| 2.9812 | 76800 | 0.0 | - |
|
1047 |
+
| 2.9889 | 77000 | 0.0 | - |
|
1048 |
+
| 2.9967 | 77200 | 0.0 | - |
|
1049 |
+
| 3.0 | 77286 | - | 0.0000 |
|
1050 |
+
|
1051 |
+
</details>
|
1052 |
+
|
1053 |
+
### Framework Versions
|
1054 |
+
- Python: 3.11.11
|
1055 |
+
- Sentence Transformers: 3.3.1
|
1056 |
+
- Transformers: 4.48.0
|
1057 |
+
- PyTorch: 2.5.1+cu121
|
1058 |
+
- Accelerate: 1.2.1
|
1059 |
+
- Datasets: 3.2.0
|
1060 |
+
- Tokenizers: 0.21.0
|
1061 |
+
|
1062 |
+
## Citation
|
1063 |
+
|
1064 |
+
### BibTeX
|
1065 |
+
|
1066 |
+
#### Sentence Transformers
|
1067 |
+
```bibtex
|
1068 |
+
@inproceedings{reimers-2019-sentence-bert,
|
1069 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
1070 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
1071 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
1072 |
+
month = "11",
|
1073 |
+
year = "2019",
|
1074 |
+
publisher = "Association for Computational Linguistics",
|
1075 |
+
url = "https://arxiv.org/abs/1908.10084",
|
1076 |
+
}
|
1077 |
+
```
|
1078 |
+
|
1079 |
+
#### MultipleNegativesRankingLoss
|
1080 |
+
```bibtex
|
1081 |
+
@misc{henderson2017efficient,
|
1082 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
1083 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
1084 |
+
year={2017},
|
1085 |
+
eprint={1705.00652},
|
1086 |
+
archivePrefix={arXiv},
|
1087 |
+
primaryClass={cs.CL}
|
1088 |
+
}
|
1089 |
+
```
|
1090 |
+
|
1091 |
+
<!--
|
1092 |
+
## Glossary
|
1093 |
+
|
1094 |
+
*Clearly define terms in order to be accessible across audiences.*
|
1095 |
+
-->
|
1096 |
+
|
1097 |
+
<!--
|
1098 |
+
## Model Card Authors
|
1099 |
+
|
1100 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
1101 |
+
-->
|
1102 |
+
|
1103 |
+
<!--
|
1104 |
+
## Model Card Contact
|
1105 |
+
|
1106 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
1107 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./modernBERT-python-code-retrieval",
|
3 |
+
"architectures": [
|
4 |
+
"ModernBertModel"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 50281,
|
9 |
+
"classifier_activation": "gelu",
|
10 |
+
"classifier_bias": false,
|
11 |
+
"classifier_dropout": 0.0,
|
12 |
+
"classifier_pooling": "mean",
|
13 |
+
"cls_token_id": 50281,
|
14 |
+
"decoder_bias": true,
|
15 |
+
"deterministic_flash_attn": false,
|
16 |
+
"embedding_dropout": 0.0,
|
17 |
+
"eos_token_id": 50282,
|
18 |
+
"global_attn_every_n_layers": 3,
|
19 |
+
"global_rope_theta": 160000.0,
|
20 |
+
"gradient_checkpointing": false,
|
21 |
+
"hidden_activation": "gelu",
|
22 |
+
"hidden_size": 768,
|
23 |
+
"initializer_cutoff_factor": 2.0,
|
24 |
+
"initializer_range": 0.02,
|
25 |
+
"intermediate_size": 1152,
|
26 |
+
"layer_norm_eps": 1e-05,
|
27 |
+
"local_attention": 128,
|
28 |
+
"local_rope_theta": 10000.0,
|
29 |
+
"max_position_embeddings": 8192,
|
30 |
+
"mlp_bias": false,
|
31 |
+
"mlp_dropout": 0.0,
|
32 |
+
"model_type": "modernbert",
|
33 |
+
"norm_bias": false,
|
34 |
+
"norm_eps": 1e-05,
|
35 |
+
"num_attention_heads": 12,
|
36 |
+
"num_hidden_layers": 22,
|
37 |
+
"pad_token_id": 50283,
|
38 |
+
"position_embedding_type": "absolute",
|
39 |
+
"reference_compile": true,
|
40 |
+
"repad_logits_with_grad": false,
|
41 |
+
"sep_token_id": 50282,
|
42 |
+
"sparse_pred_ignore_index": -100,
|
43 |
+
"sparse_prediction": false,
|
44 |
+
"torch_dtype": "float32",
|
45 |
+
"transformers_version": "4.48.1",
|
46 |
+
"vocab_size": 50368
|
47 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.48.1",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8763110e75db040058b130b75e405d154741ee7768e42f001b0126d13695c802
|
3 |
+
size 596070136
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 4096,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": true,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,952 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "|||IP_ADDRESS|||",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": true,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": false
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<|padding|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"50254": {
|
20 |
+
"content": " ",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": true,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": false
|
26 |
+
},
|
27 |
+
"50255": {
|
28 |
+
"content": " ",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": false
|
34 |
+
},
|
35 |
+
"50256": {
|
36 |
+
"content": " ",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": true,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": false
|
42 |
+
},
|
43 |
+
"50257": {
|
44 |
+
"content": " ",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": true,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": false
|
50 |
+
},
|
51 |
+
"50258": {
|
52 |
+
"content": " ",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": true,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": false
|
58 |
+
},
|
59 |
+
"50259": {
|
60 |
+
"content": " ",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": true,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": false
|
66 |
+
},
|
67 |
+
"50260": {
|
68 |
+
"content": " ",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": true,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": false
|
74 |
+
},
|
75 |
+
"50261": {
|
76 |
+
"content": " ",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": true,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": false
|
82 |
+
},
|
83 |
+
"50262": {
|
84 |
+
"content": " ",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": true,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": false
|
90 |
+
},
|
91 |
+
"50263": {
|
92 |
+
"content": " ",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": true,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": false
|
98 |
+
},
|
99 |
+
"50264": {
|
100 |
+
"content": " ",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": true,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": false
|
106 |
+
},
|
107 |
+
"50265": {
|
108 |
+
"content": " ",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": true,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": false
|
114 |
+
},
|
115 |
+
"50266": {
|
116 |
+
"content": " ",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": true,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": false
|
122 |
+
},
|
123 |
+
"50267": {
|
124 |
+
"content": " ",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": true,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": false
|
130 |
+
},
|
131 |
+
"50268": {
|
132 |
+
"content": " ",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": true,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": false
|
138 |
+
},
|
139 |
+
"50269": {
|
140 |
+
"content": " ",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": true,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": false
|
146 |
+
},
|
147 |
+
"50270": {
|
148 |
+
"content": " ",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": true,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": false
|
154 |
+
},
|
155 |
+
"50271": {
|
156 |
+
"content": " ",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": true,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": false
|
162 |
+
},
|
163 |
+
"50272": {
|
164 |
+
"content": " ",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": true,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": false
|
170 |
+
},
|
171 |
+
"50273": {
|
172 |
+
"content": " ",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": true,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": false
|
178 |
+
},
|
179 |
+
"50274": {
|
180 |
+
"content": " ",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": true,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": false
|
186 |
+
},
|
187 |
+
"50275": {
|
188 |
+
"content": " ",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": true,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": false
|
194 |
+
},
|
195 |
+
"50276": {
|
196 |
+
"content": " ",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": true,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": false
|
202 |
+
},
|
203 |
+
"50277": {
|
204 |
+
"content": "|||EMAIL_ADDRESS|||",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": true,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": false
|
210 |
+
},
|
211 |
+
"50278": {
|
212 |
+
"content": "|||PHONE_NUMBER|||",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": true,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": false
|
218 |
+
},
|
219 |
+
"50279": {
|
220 |
+
"content": "<|endoftext|>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"50280": {
|
228 |
+
"content": "[UNK]",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"50281": {
|
236 |
+
"content": "[CLS]",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"50282": {
|
244 |
+
"content": "[SEP]",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"50283": {
|
252 |
+
"content": "[PAD]",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"50284": {
|
260 |
+
"content": "[MASK]",
|
261 |
+
"lstrip": true,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"50285": {
|
268 |
+
"content": "[unused0]",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": true,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": false
|
274 |
+
},
|
275 |
+
"50286": {
|
276 |
+
"content": "[unused1]",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": true,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": false
|
282 |
+
},
|
283 |
+
"50287": {
|
284 |
+
"content": "[unused2]",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": true,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": false
|
290 |
+
},
|
291 |
+
"50288": {
|
292 |
+
"content": "[unused3]",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": true,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": false
|
298 |
+
},
|
299 |
+
"50289": {
|
300 |
+
"content": "[unused4]",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": true,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": false
|
306 |
+
},
|
307 |
+
"50290": {
|
308 |
+
"content": "[unused5]",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": true,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": false
|
314 |
+
},
|
315 |
+
"50291": {
|
316 |
+
"content": "[unused6]",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": true,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": false
|
322 |
+
},
|
323 |
+
"50292": {
|
324 |
+
"content": "[unused7]",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": true,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": false
|
330 |
+
},
|
331 |
+
"50293": {
|
332 |
+
"content": "[unused8]",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": true,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": false
|
338 |
+
},
|
339 |
+
"50294": {
|
340 |
+
"content": "[unused9]",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": true,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": false
|
346 |
+
},
|
347 |
+
"50295": {
|
348 |
+
"content": "[unused10]",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": true,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": false
|
354 |
+
},
|
355 |
+
"50296": {
|
356 |
+
"content": "[unused11]",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": true,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": false
|
362 |
+
},
|
363 |
+
"50297": {
|
364 |
+
"content": "[unused12]",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": true,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": false
|
370 |
+
},
|
371 |
+
"50298": {
|
372 |
+
"content": "[unused13]",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": true,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": false
|
378 |
+
},
|
379 |
+
"50299": {
|
380 |
+
"content": "[unused14]",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": true,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": false
|
386 |
+
},
|
387 |
+
"50300": {
|
388 |
+
"content": "[unused15]",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": true,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": false
|
394 |
+
},
|
395 |
+
"50301": {
|
396 |
+
"content": "[unused16]",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": true,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": false
|
402 |
+
},
|
403 |
+
"50302": {
|
404 |
+
"content": "[unused17]",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": true,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": false
|
410 |
+
},
|
411 |
+
"50303": {
|
412 |
+
"content": "[unused18]",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": true,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": false
|
418 |
+
},
|
419 |
+
"50304": {
|
420 |
+
"content": "[unused19]",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": true,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": false
|
426 |
+
},
|
427 |
+
"50305": {
|
428 |
+
"content": "[unused20]",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": true,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": false
|
434 |
+
},
|
435 |
+
"50306": {
|
436 |
+
"content": "[unused21]",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": true,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": false
|
442 |
+
},
|
443 |
+
"50307": {
|
444 |
+
"content": "[unused22]",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": true,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": false
|
450 |
+
},
|
451 |
+
"50308": {
|
452 |
+
"content": "[unused23]",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": true,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": false
|
458 |
+
},
|
459 |
+
"50309": {
|
460 |
+
"content": "[unused24]",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": true,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": false
|
466 |
+
},
|
467 |
+
"50310": {
|
468 |
+
"content": "[unused25]",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": true,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": false
|
474 |
+
},
|
475 |
+
"50311": {
|
476 |
+
"content": "[unused26]",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": true,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": false
|
482 |
+
},
|
483 |
+
"50312": {
|
484 |
+
"content": "[unused27]",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": true,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": false
|
490 |
+
},
|
491 |
+
"50313": {
|
492 |
+
"content": "[unused28]",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": true,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": false
|
498 |
+
},
|
499 |
+
"50314": {
|
500 |
+
"content": "[unused29]",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": true,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": false
|
506 |
+
},
|
507 |
+
"50315": {
|
508 |
+
"content": "[unused30]",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": true,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": false
|
514 |
+
},
|
515 |
+
"50316": {
|
516 |
+
"content": "[unused31]",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": true,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": false
|
522 |
+
},
|
523 |
+
"50317": {
|
524 |
+
"content": "[unused32]",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": true,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": false
|
530 |
+
},
|
531 |
+
"50318": {
|
532 |
+
"content": "[unused33]",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": true,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": false
|
538 |
+
},
|
539 |
+
"50319": {
|
540 |
+
"content": "[unused34]",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": true,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": false
|
546 |
+
},
|
547 |
+
"50320": {
|
548 |
+
"content": "[unused35]",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": true,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": false
|
554 |
+
},
|
555 |
+
"50321": {
|
556 |
+
"content": "[unused36]",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": true,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": false
|
562 |
+
},
|
563 |
+
"50322": {
|
564 |
+
"content": "[unused37]",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": true,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": false
|
570 |
+
},
|
571 |
+
"50323": {
|
572 |
+
"content": "[unused38]",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": true,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": false
|
578 |
+
},
|
579 |
+
"50324": {
|
580 |
+
"content": "[unused39]",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": true,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": false
|
586 |
+
},
|
587 |
+
"50325": {
|
588 |
+
"content": "[unused40]",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": true,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": false
|
594 |
+
},
|
595 |
+
"50326": {
|
596 |
+
"content": "[unused41]",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": true,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": false
|
602 |
+
},
|
603 |
+
"50327": {
|
604 |
+
"content": "[unused42]",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": true,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": false
|
610 |
+
},
|
611 |
+
"50328": {
|
612 |
+
"content": "[unused43]",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": true,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": false
|
618 |
+
},
|
619 |
+
"50329": {
|
620 |
+
"content": "[unused44]",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": true,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": false
|
626 |
+
},
|
627 |
+
"50330": {
|
628 |
+
"content": "[unused45]",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": true,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": false
|
634 |
+
},
|
635 |
+
"50331": {
|
636 |
+
"content": "[unused46]",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": true,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": false
|
642 |
+
},
|
643 |
+
"50332": {
|
644 |
+
"content": "[unused47]",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": true,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": false
|
650 |
+
},
|
651 |
+
"50333": {
|
652 |
+
"content": "[unused48]",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": true,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": false
|
658 |
+
},
|
659 |
+
"50334": {
|
660 |
+
"content": "[unused49]",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": true,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": false
|
666 |
+
},
|
667 |
+
"50335": {
|
668 |
+
"content": "[unused50]",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": true,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": false
|
674 |
+
},
|
675 |
+
"50336": {
|
676 |
+
"content": "[unused51]",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": true,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": false
|
682 |
+
},
|
683 |
+
"50337": {
|
684 |
+
"content": "[unused52]",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": true,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": false
|
690 |
+
},
|
691 |
+
"50338": {
|
692 |
+
"content": "[unused53]",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": true,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": false
|
698 |
+
},
|
699 |
+
"50339": {
|
700 |
+
"content": "[unused54]",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": true,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": false
|
706 |
+
},
|
707 |
+
"50340": {
|
708 |
+
"content": "[unused55]",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": true,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": false
|
714 |
+
},
|
715 |
+
"50341": {
|
716 |
+
"content": "[unused56]",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": true,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": false
|
722 |
+
},
|
723 |
+
"50342": {
|
724 |
+
"content": "[unused57]",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": true,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": false
|
730 |
+
},
|
731 |
+
"50343": {
|
732 |
+
"content": "[unused58]",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": true,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": false
|
738 |
+
},
|
739 |
+
"50344": {
|
740 |
+
"content": "[unused59]",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": true,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": false
|
746 |
+
},
|
747 |
+
"50345": {
|
748 |
+
"content": "[unused60]",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": true,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": false
|
754 |
+
},
|
755 |
+
"50346": {
|
756 |
+
"content": "[unused61]",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": true,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": false
|
762 |
+
},
|
763 |
+
"50347": {
|
764 |
+
"content": "[unused62]",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": true,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": false
|
770 |
+
},
|
771 |
+
"50348": {
|
772 |
+
"content": "[unused63]",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": true,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": false
|
778 |
+
},
|
779 |
+
"50349": {
|
780 |
+
"content": "[unused64]",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": true,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": false
|
786 |
+
},
|
787 |
+
"50350": {
|
788 |
+
"content": "[unused65]",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": true,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": false
|
794 |
+
},
|
795 |
+
"50351": {
|
796 |
+
"content": "[unused66]",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": true,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": false
|
802 |
+
},
|
803 |
+
"50352": {
|
804 |
+
"content": "[unused67]",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": true,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": false
|
810 |
+
},
|
811 |
+
"50353": {
|
812 |
+
"content": "[unused68]",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": true,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": false
|
818 |
+
},
|
819 |
+
"50354": {
|
820 |
+
"content": "[unused69]",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": true,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": false
|
826 |
+
},
|
827 |
+
"50355": {
|
828 |
+
"content": "[unused70]",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": true,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": false
|
834 |
+
},
|
835 |
+
"50356": {
|
836 |
+
"content": "[unused71]",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": true,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": false
|
842 |
+
},
|
843 |
+
"50357": {
|
844 |
+
"content": "[unused72]",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": true,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": false
|
850 |
+
},
|
851 |
+
"50358": {
|
852 |
+
"content": "[unused73]",
|
853 |
+
"lstrip": false,
|
854 |
+
"normalized": true,
|
855 |
+
"rstrip": false,
|
856 |
+
"single_word": false,
|
857 |
+
"special": false
|
858 |
+
},
|
859 |
+
"50359": {
|
860 |
+
"content": "[unused74]",
|
861 |
+
"lstrip": false,
|
862 |
+
"normalized": true,
|
863 |
+
"rstrip": false,
|
864 |
+
"single_word": false,
|
865 |
+
"special": false
|
866 |
+
},
|
867 |
+
"50360": {
|
868 |
+
"content": "[unused75]",
|
869 |
+
"lstrip": false,
|
870 |
+
"normalized": true,
|
871 |
+
"rstrip": false,
|
872 |
+
"single_word": false,
|
873 |
+
"special": false
|
874 |
+
},
|
875 |
+
"50361": {
|
876 |
+
"content": "[unused76]",
|
877 |
+
"lstrip": false,
|
878 |
+
"normalized": true,
|
879 |
+
"rstrip": false,
|
880 |
+
"single_word": false,
|
881 |
+
"special": false
|
882 |
+
},
|
883 |
+
"50362": {
|
884 |
+
"content": "[unused77]",
|
885 |
+
"lstrip": false,
|
886 |
+
"normalized": true,
|
887 |
+
"rstrip": false,
|
888 |
+
"single_word": false,
|
889 |
+
"special": false
|
890 |
+
},
|
891 |
+
"50363": {
|
892 |
+
"content": "[unused78]",
|
893 |
+
"lstrip": false,
|
894 |
+
"normalized": true,
|
895 |
+
"rstrip": false,
|
896 |
+
"single_word": false,
|
897 |
+
"special": false
|
898 |
+
},
|
899 |
+
"50364": {
|
900 |
+
"content": "[unused79]",
|
901 |
+
"lstrip": false,
|
902 |
+
"normalized": true,
|
903 |
+
"rstrip": false,
|
904 |
+
"single_word": false,
|
905 |
+
"special": false
|
906 |
+
},
|
907 |
+
"50365": {
|
908 |
+
"content": "[unused80]",
|
909 |
+
"lstrip": false,
|
910 |
+
"normalized": true,
|
911 |
+
"rstrip": false,
|
912 |
+
"single_word": false,
|
913 |
+
"special": false
|
914 |
+
},
|
915 |
+
"50366": {
|
916 |
+
"content": "[unused81]",
|
917 |
+
"lstrip": false,
|
918 |
+
"normalized": true,
|
919 |
+
"rstrip": false,
|
920 |
+
"single_word": false,
|
921 |
+
"special": false
|
922 |
+
},
|
923 |
+
"50367": {
|
924 |
+
"content": "[unused82]",
|
925 |
+
"lstrip": false,
|
926 |
+
"normalized": true,
|
927 |
+
"rstrip": false,
|
928 |
+
"single_word": false,
|
929 |
+
"special": false
|
930 |
+
}
|
931 |
+
},
|
932 |
+
"clean_up_tokenization_spaces": true,
|
933 |
+
"cls_token": "[CLS]",
|
934 |
+
"extra_special_tokens": {},
|
935 |
+
"mask_token": "[MASK]",
|
936 |
+
"max_length": 4096,
|
937 |
+
"model_input_names": [
|
938 |
+
"input_ids",
|
939 |
+
"attention_mask"
|
940 |
+
],
|
941 |
+
"model_max_length": 4096,
|
942 |
+
"pad_to_multiple_of": null,
|
943 |
+
"pad_token": "[PAD]",
|
944 |
+
"pad_token_type_id": 0,
|
945 |
+
"padding_side": "right",
|
946 |
+
"sep_token": "[SEP]",
|
947 |
+
"stride": 0,
|
948 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
949 |
+
"truncation_side": "right",
|
950 |
+
"truncation_strategy": "longest_first",
|
951 |
+
"unk_token": "[UNK]"
|
952 |
+
}
|