juanwisz commited on
Commit
b9a978d
·
verified ·
1 Parent(s): b5b5037

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,1107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:412178
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: answerdotai/ModernBERT-base
10
+ widget:
11
+ - source_sentence: "Clip off all parts from all bounding boxes that are outside of\
12
+ \ the image.\n\n Returns\n -------\n imgaug.BoundingBoxesOnImage\n\
13
+ \ Bounding boxes, clipped to fall within the image dimensions."
14
+ sentences:
15
+ - "def model_best(y1, y2, samples=1000, progressbar=True):\n \"\"\"\n Bayesian\
16
+ \ Estimation Supersedes the T-Test\n\n This model runs a Bayesian hypothesis\
17
+ \ comparing if y1 and y2 come\n from the same distribution. Returns are assumed\
18
+ \ to be T-distributed.\n\n In addition, computes annual volatility and Sharpe\
19
+ \ of in and\n out-of-sample periods.\n\n This model replicates the example\
20
+ \ used in:\n Kruschke, John. (2012) Bayesian estimation supersedes the t\n\
21
+ \ test. Journal of Experimental Psychology: General.\n\n Parameters\n \
22
+ \ ----------\n y1 : array-like\n Array of returns (e.g. in-sample)\n\
23
+ \ y2 : array-like\n Array of returns (e.g. out-of-sample)\n samples\
24
+ \ : int, optional\n Number of posterior samples to draw.\n\n Returns\n\
25
+ \ -------\n model : pymc.Model object\n PyMC3 model containing all\
26
+ \ random variables.\n trace : pymc3.sampling.BaseTrace object\n A PyMC3\
27
+ \ trace object that contains samples for each parameter\n of the posterior.\n\
28
+ \n See Also\n --------\n plot_stoch_vol : plotting of tochastic volatility\
29
+ \ model\n \"\"\"\n\n y = np.concatenate((y1, y2))\n\n mu_m = np.mean(y)\n\
30
+ \ mu_p = 0.000001 * 1 / np.std(y)**2\n\n sigma_low = np.std(y) / 1000\n\
31
+ \ sigma_high = np.std(y) * 1000\n with pm.Model() as model:\n group1_mean\
32
+ \ = pm.Normal('group1_mean', mu=mu_m, tau=mu_p,\n \
33
+ \ testval=y1.mean())\n group2_mean = pm.Normal('group2_mean', mu=mu_m,\
34
+ \ tau=mu_p,\n testval=y2.mean())\n group1_std\
35
+ \ = pm.Uniform('group1_std', lower=sigma_low,\n \
36
+ \ upper=sigma_high, testval=y1.std())\n group2_std = pm.Uniform('group2_std',\
37
+ \ lower=sigma_low,\n upper=sigma_high, testval=y2.std())\n\
38
+ \ nu = pm.Exponential('nu_minus_two', 1 / 29., testval=4.) + 2.\n\n \
39
+ \ returns_group1 = pm.StudentT('group1', nu=nu, mu=group1_mean,\n \
40
+ \ lam=group1_std**-2, observed=y1)\n returns_group2\
41
+ \ = pm.StudentT('group2', nu=nu, mu=group2_mean,\n \
42
+ \ lam=group2_std**-2, observed=y2)\n\n diff_of_means = pm.Deterministic('difference\
43
+ \ of means',\n group2_mean - group1_mean)\n\
44
+ \ pm.Deterministic('difference of stds',\n group2_std\
45
+ \ - group1_std)\n pm.Deterministic('effect size', diff_of_means /\n \
46
+ \ pm.math.sqrt((group1_std**2 +\n \
47
+ \ group2_std**2) / 2))\n\n pm.Deterministic('group1_annual_volatility',\n\
48
+ \ returns_group1.distribution.variance**.5 *\n \
49
+ \ np.sqrt(252))\n pm.Deterministic('group2_annual_volatility',\n\
50
+ \ returns_group2.distribution.variance**.5 *\n \
51
+ \ np.sqrt(252))\n\n pm.Deterministic('group1_sharpe',\
52
+ \ returns_group1.distribution.mean /\n returns_group1.distribution.variance**.5\
53
+ \ *\n np.sqrt(252))\n pm.Deterministic('group2_sharpe',\
54
+ \ returns_group2.distribution.mean /\n returns_group2.distribution.variance**.5\
55
+ \ *\n np.sqrt(252))\n\n trace = pm.sample(samples,\
56
+ \ progressbar=progressbar)\n return model, trace"
57
+ - "def clip_out_of_image(self):\n \"\"\"\n Clip off all parts from\
58
+ \ all bounding boxes that are outside of the image.\n\n Returns\n \
59
+ \ -------\n imgaug.BoundingBoxesOnImage\n Bounding boxes,\
60
+ \ clipped to fall within the image dimensions.\n\n \"\"\"\n bbs_cut\
61
+ \ = [bb.clip_out_of_image(self.shape)\n for bb in self.bounding_boxes\
62
+ \ if bb.is_partly_within_image(self.shape)]\n return BoundingBoxesOnImage(bbs_cut,\
63
+ \ shape=self.shape)"
64
+ - "def _initPermanence(self, potential, connectedPct):\n \"\"\"\n Initializes\
65
+ \ the permanences of a column. The method\n returns a 1-D array the size of\
66
+ \ the input, where each entry in the\n array represents the initial permanence\
67
+ \ value between the input bit\n at the particular index in the array, and the\
68
+ \ column represented by\n the 'index' parameter.\n\n Parameters:\n ----------------------------\n\
69
+ \ :param potential: A numpy array specifying the potential pool of the column.\n\
70
+ \ Permanence values will only be generated for input bits\n\
71
+ \ corresponding to indices for which the mask value is 1.\n\
72
+ \ :param connectedPct: A value between 0 or 1 governing the chance, for each\n\
73
+ \ permanence, that the initial permanence value will\n\
74
+ \ be a value that is considered connected.\n \"\"\"\
75
+ \n # Determine which inputs bits will start out as connected\n # to the\
76
+ \ inputs. Initially a subset of the input bits in a\n # column's potential\
77
+ \ pool will be connected. This number is\n # given by the parameter \"connectedPct\"\
78
+ \n perm = numpy.zeros(self._numInputs, dtype=realDType)\n for i in xrange(self._numInputs):\n\
79
+ \ if (potential[i] < 1):\n continue\n\n if (self._random.getReal64()\
80
+ \ <= connectedPct):\n perm[i] = self._initPermConnected()\n else:\n\
81
+ \ perm[i] = self._initPermNonConnected()\n\n # Clip off low values.\
82
+ \ Since we use a sparse representation\n # to store the permanence values this\
83
+ \ helps reduce memory\n # requirements.\n perm[perm < self._synPermTrimThreshold]\
84
+ \ = 0\n\n return perm"
85
+ - source_sentence: "Perform a weighted average over dicts that are each on a different\
86
+ \ node\n Input: local_name2valcount: dict mapping key -> (value, count)\n \
87
+ \ Returns: key -> mean"
88
+ sentences:
89
+ - "def MotionBlur(k=5, angle=(0, 360), direction=(-1.0, 1.0), order=1, name=None,\
90
+ \ deterministic=False, random_state=None):\n \"\"\"\n Augmenter that sharpens\
91
+ \ images and overlays the result with the original image.\n\n dtype support::\n\
92
+ \n See ``imgaug.augmenters.convolutional.Convolve``.\n\n Parameters\n\
93
+ \ ----------\n k : int or tuple of int or list of int or imgaug.parameters.StochasticParameter,\
94
+ \ optional\n Kernel size to use.\n\n * If a single int, then\
95
+ \ that value will be used for the height\n and width of the kernel.\n\
96
+ \ * If a tuple of two ints ``(a, b)``, then the kernel size will be\n\
97
+ \ sampled from the interval ``[a..b]``.\n * If a list,\
98
+ \ then a random value will be sampled from that list per image.\n *\
99
+ \ If a StochasticParameter, then ``N`` samples will be drawn from\n \
100
+ \ that parameter per ``N`` input images, each representing the kernel\n \
101
+ \ size for the nth image.\n\n angle : number or tuple of number or\
102
+ \ list of number or imgaug.parameters.StochasticParameter, optional\n Angle\
103
+ \ of the motion blur in degrees (clockwise, relative to top center direction).\n\
104
+ \n * If a number, exactly that value will be used.\n * If\
105
+ \ a tuple ``(a, b)``, a random value from the range ``a <= x <= b`` will\n \
106
+ \ be sampled per image.\n * If a list, then a random value\
107
+ \ will be sampled from that list per image.\n * If a StochasticParameter,\
108
+ \ a value will be sampled from the\n parameter per image.\n\n \
109
+ \ direction : number or tuple of number or list of number or imgaug.parameters.StochasticParameter,\
110
+ \ optional\n Forward/backward direction of the motion blur. Lower values\
111
+ \ towards -1.0 will point the motion blur towards\n the back (with angle\
112
+ \ provided via `angle`). Higher values towards 1.0 will point the motion blur\
113
+ \ forward.\n A value of 0.0 leads to a uniformly (but still angled) motion\
114
+ \ blur.\n\n * If a number, exactly that value will be used.\n \
115
+ \ * If a tuple ``(a, b)``, a random value from the range ``a <= x <= b``\
116
+ \ will\n be sampled per image.\n * If a list, then a random\
117
+ \ value will be sampled from that list per image.\n * If a StochasticParameter,\
118
+ \ a value will be sampled from the\n parameter per image.\n\n \
119
+ \ order : int or iterable of int or imgaug.ALL or imgaug.parameters.StochasticParameter,\
120
+ \ optional\n Interpolation order to use when rotating the kernel according\
121
+ \ to `angle`.\n See :func:`imgaug.augmenters.geometric.Affine.__init__`.\n\
122
+ \ Recommended to be ``0`` or ``1``, with ``0`` being faster, but less continuous/smooth\
123
+ \ as `angle` is changed,\n particularly around multiple of 45 degrees.\n\
124
+ \n name : None or str, optional\n See :func:`imgaug.augmenters.meta.Augmenter.__init__`.\n\
125
+ \n deterministic : bool, optional\n See :func:`imgaug.augmenters.meta.Augmenter.__init__`.\n\
126
+ \n random_state : None or int or numpy.random.RandomState, optional\n \
127
+ \ See :func:`imgaug.augmenters.meta.Augmenter.__init__`.\n\n Examples\n \
128
+ \ --------\n >>> aug = iaa.MotionBlur(k=15)\n\n Create a motion blur augmenter\
129
+ \ with kernel size of 15x15.\n\n >>> aug = iaa.MotionBlur(k=15, angle=[-45,\
130
+ \ 45])\n\n Create a motion blur augmenter with kernel size of 15x15 and a blur\
131
+ \ angle of either -45 or 45 degrees (randomly\n picked per image).\n\n \"\
132
+ \"\"\n # TODO allow (1, None) and set to identity matrix if k == 1\n k_param\
133
+ \ = iap.handle_discrete_param(k, \"k\", value_range=(3, None), tuple_to_uniform=True,\
134
+ \ list_to_choice=True,\n allow_floats=False)\n\
135
+ \ angle_param = iap.handle_continuous_param(angle, \"angle\", value_range=None,\
136
+ \ tuple_to_uniform=True,\n list_to_choice=True)\n\
137
+ \ direction_param = iap.handle_continuous_param(direction, \"direction\", value_range=(-1.0-1e-6,\
138
+ \ 1.0+1e-6),\n tuple_to_uniform=True,\
139
+ \ list_to_choice=True)\n\n def create_matrices(image, nb_channels, random_state_func):\n\
140
+ \ # avoid cyclic import between blur and geometric\n from . import\
141
+ \ geometric as iaa_geometric\n\n # force discrete for k_sample via int()\
142
+ \ in case of stochastic parameter\n k_sample = int(k_param.draw_sample(random_state=random_state_func))\n\
143
+ \ angle_sample = angle_param.draw_sample(random_state=random_state_func)\n\
144
+ \ direction_sample = direction_param.draw_sample(random_state=random_state_func)\n\
145
+ \n k_sample = k_sample if k_sample % 2 != 0 else k_sample + 1\n \
146
+ \ direction_sample = np.clip(direction_sample, -1.0, 1.0)\n direction_sample\
147
+ \ = (direction_sample + 1.0) / 2.0\n\n matrix = np.zeros((k_sample, k_sample),\
148
+ \ dtype=np.float32)\n matrix[:, k_sample//2] = np.linspace(float(direction_sample),\
149
+ \ 1.0 - float(direction_sample), num=k_sample)\n rot = iaa_geometric.Affine(rotate=angle_sample,\
150
+ \ order=order)\n matrix = (rot.augment_image((matrix * 255).astype(np.uint8))\
151
+ \ / 255.0).astype(np.float32)\n\n return [matrix/np.sum(matrix)] * nb_channels\n\
152
+ \n if name is None:\n name = \"Unnamed%s\" % (ia.caller_name(),)\n\n\
153
+ \ return iaa_convolutional.Convolve(create_matrices, name=name, deterministic=deterministic,\n\
154
+ \ random_state=random_state)"
155
+ - "def rolling_sharpe(returns, rolling_sharpe_window):\n \"\"\"\n Determines\
156
+ \ the rolling Sharpe ratio of a strategy.\n\n Parameters\n ----------\n\
157
+ \ returns : pd.Series\n Daily returns of the strategy, noncumulative.\n\
158
+ \ - See full explanation in tears.create_full_tear_sheet.\n rolling_sharpe_window\
159
+ \ : int\n Length of rolling window, in days, over which to compute.\n\n\
160
+ \ Returns\n -------\n pd.Series\n Rolling Sharpe ratio.\n\n \
161
+ \ Note\n -----\n See https://en.wikipedia.org/wiki/Sharpe_ratio for more\
162
+ \ details.\n \"\"\"\n\n return returns.rolling(rolling_sharpe_window).mean()\
163
+ \ \\\n / returns.rolling(rolling_sharpe_window).std() \\\n * np.sqrt(APPROX_BDAYS_PER_YEAR)"
164
+ - "def mpi_weighted_mean(comm, local_name2valcount):\n \"\"\"\n Perform a\
165
+ \ weighted average over dicts that are each on a different node\n Input: local_name2valcount:\
166
+ \ dict mapping key -> (value, count)\n Returns: key -> mean\n \"\"\"\n \
167
+ \ all_name2valcount = comm.gather(local_name2valcount)\n if comm.rank ==\
168
+ \ 0:\n name2sum = defaultdict(float)\n name2count = defaultdict(float)\n\
169
+ \ for n2vc in all_name2valcount:\n for (name, (val, count))\
170
+ \ in n2vc.items():\n try:\n val = float(val)\n\
171
+ \ except ValueError:\n if comm.rank == 0:\n\
172
+ \ warnings.warn('WARNING: tried to compute mean on non-float\
173
+ \ {}={}'.format(name, val))\n else:\n name2sum[name]\
174
+ \ += val * count\n name2count[name] += count\n return\
175
+ \ {name : name2sum[name] / name2count[name] for name in name2sum}\n else:\n\
176
+ \ return {}"
177
+ - source_sentence: "Generate and return the following encoder related substitution\
178
+ \ variables:\n\n encoderSpecsStr:\n For the base description file, this string\
179
+ \ defines the default\n encoding dicts for each encoder. For example:\n \
180
+ \ '__gym_encoder' : { 'fieldname': 'gym',\n 'n': 13,\n \
181
+ \ 'name': 'gym',\n 'type': 'SDRCategoryEncoder',\n 'w': 7},\n\
182
+ \ '__address_encoder' : { 'fieldname': 'address',\n 'n': 13,\n\
183
+ \ 'name': 'address',\n 'type': 'SDRCategoryEncoder',\n \
184
+ \ 'w': 7}\n\n encoderSchemaStr:\n For the base description file, this\
185
+ \ is a list containing a\n DeferredDictLookup entry for each encoder. For example:\n\
186
+ \ [DeferredDictLookup('__gym_encoder'),\n DeferredDictLookup('__address_encoder'),\n\
187
+ \ DeferredDictLookup('__timestamp_timeOfDay_encoder'),\n DeferredDictLookup('__timestamp_dayOfWeek_encoder'),\n\
188
+ \ DeferredDictLookup('__consumption_encoder')],\n\n permEncoderChoicesStr:\n\
189
+ \ For the permutations file, this defines the possible\n encoder dicts for\
190
+ \ each encoder. For example:\n '__timestamp_dayOfWeek_encoder': [\n \
191
+ \ None,\n {'fieldname':'timestamp',\n \
192
+ \ 'name': 'timestamp_timeOfDay',\n 'type':'DateEncoder'\n\
193
+ \ 'dayOfWeek': (7,1)\n },\n \
194
+ \ {'fieldname':'timestamp',\n 'name': 'timestamp_timeOfDay',\n\
195
+ \ 'type':'DateEncoder'\n 'dayOfWeek':\
196
+ \ (7,3)\n },\n ],\n\n '__field_consumption_encoder':\
197
+ \ [\n None,\n {'fieldname':'consumption',\n\
198
+ \ 'name': 'consumption',\n 'type':'AdaptiveScalarEncoder',\n\
199
+ \ 'n': 13,\n 'w': 7,\n \
200
+ \ }\n ]\n\n\n\n Parameters:\n --------------------------------------------------\n\
201
+ \ includedFields: item from the 'includedFields' section of the\n \
202
+ \ description JSON object. This is a list of dicts, each\n \
203
+ \ dict defining the field name, type, and optional min\n \
204
+ \ and max values.\n\n retval: (encoderSpecsStr, encoderSchemaStr permEncoderChoicesStr)"
205
+ sentences:
206
+ - "def _generateEncoderStringsV1(includedFields):\n \"\"\" Generate and return\
207
+ \ the following encoder related substitution variables:\n\n encoderSpecsStr:\n\
208
+ \ For the base description file, this string defines the default\n encoding\
209
+ \ dicts for each encoder. For example:\n '__gym_encoder' : { 'fieldname':\
210
+ \ 'gym',\n 'n': 13,\n 'name': 'gym',\n 'type': 'SDRCategoryEncoder',\n\
211
+ \ 'w': 7},\n '__address_encoder' : { 'fieldname': 'address',\n\
212
+ \ 'n': 13,\n 'name': 'address',\n 'type': 'SDRCategoryEncoder',\n\
213
+ \ 'w': 7}\n\n encoderSchemaStr:\n For the base description file,\
214
+ \ this is a list containing a\n DeferredDictLookup entry for each encoder.\
215
+ \ For example:\n [DeferredDictLookup('__gym_encoder'),\n DeferredDictLookup('__address_encoder'),\n\
216
+ \ DeferredDictLookup('__timestamp_timeOfDay_encoder'),\n DeferredDictLookup('__timestamp_dayOfWeek_encoder'),\n\
217
+ \ DeferredDictLookup('__consumption_encoder')],\n\n permEncoderChoicesStr:\n\
218
+ \ For the permutations file, this defines the possible\n encoder dicts for\
219
+ \ each encoder. For example:\n '__timestamp_dayOfWeek_encoder': [\n \
220
+ \ None,\n {'fieldname':'timestamp',\n \
221
+ \ 'name': 'timestamp_timeOfDay',\n 'type':'DateEncoder'\n\
222
+ \ 'dayOfWeek': (7,1)\n },\n \
223
+ \ {'fieldname':'timestamp',\n 'name': 'timestamp_timeOfDay',\n\
224
+ \ 'type':'DateEncoder'\n 'dayOfWeek':\
225
+ \ (7,3)\n },\n ],\n\n '__field_consumption_encoder':\
226
+ \ [\n None,\n {'fieldname':'consumption',\n\
227
+ \ 'name': 'consumption',\n 'type':'AdaptiveScalarEncoder',\n\
228
+ \ 'n': 13,\n 'w': 7,\n \
229
+ \ }\n ]\n\n\n\n Parameters:\n --------------------------------------------------\n\
230
+ \ includedFields: item from the 'includedFields' section of the\n \
231
+ \ description JSON object. This is a list of dicts, each\n \
232
+ \ dict defining the field name, type, and optional min\n \
233
+ \ and max values.\n\n retval: (encoderSpecsStr, encoderSchemaStr permEncoderChoicesStr)\n\
234
+ \n\n \"\"\"\n\n # ------------------------------------------------------------------------\n\
235
+ \ # First accumulate the possible choices for each encoder\n encoderChoicesList\
236
+ \ = []\n for fieldInfo in includedFields:\n\n fieldName = fieldInfo['fieldName']\n\
237
+ \n # Get the list of encoder choices for this field\n (choicesList, aggFunction)\
238
+ \ = _generateEncoderChoicesV1(fieldInfo)\n encoderChoicesList.extend(choicesList)\n\
239
+ \n\n # ------------------------------------------------------------------------\n\
240
+ \ # Generate the string containing the encoder specs and encoder schema. See\n\
241
+ \ # the function comments for an example of the encoderSpecsStr and\n # encoderSchemaStr\n\
242
+ \ #\n encoderSpecsList = []\n for encoderChoices in encoderChoicesList:\n \
243
+ \ # Use the last choice as the default in the base file because the 1st is\n\
244
+ \ # often None\n encoder = encoderChoices[-1]\n\n # Check for bad characters\n\
245
+ \ for c in _ILLEGAL_FIELDNAME_CHARACTERS:\n if encoder['name'].find(c)\
246
+ \ >= 0:\n raise _ExpGeneratorException(\"Illegal character in field: %r\
247
+ \ (%r)\" % (\n c, encoder['name']))\n\n encoderSpecsList.append(\"\
248
+ %s: \\n%s%s\" % (\n _quoteAndEscape(encoder['name']),\n 2*_ONE_INDENT,\n\
249
+ \ pprint.pformat(encoder, indent=2*_INDENT_STEP)))\n\n encoderSpecsStr\
250
+ \ = ',\\n '.join(encoderSpecsList)\n\n\n # ------------------------------------------------------------------------\n\
251
+ \ # Generate the string containing the permutation encoder choices. See the\n\
252
+ \ # function comments above for an example of the permEncoderChoicesStr\n\n\
253
+ \ permEncoderChoicesList = []\n for encoderChoices in encoderChoicesList:\n\
254
+ \ permEncoderChoicesList.append(\"%s: %s,\" % (\n _quoteAndEscape(encoderChoices[-1]['name']),\n\
255
+ \ pprint.pformat(encoderChoices, indent=2*_INDENT_STEP)))\n permEncoderChoicesStr\
256
+ \ = '\\n'.join(permEncoderChoicesList)\n permEncoderChoicesStr = _indentLines(permEncoderChoicesStr,\
257
+ \ 1,\n indentFirstLine=False)\n\n # Return\
258
+ \ results\n return (encoderSpecsStr, permEncoderChoicesStr)"
259
+ - "def shift(self, top=None, right=None, bottom=None, left=None):\n \"\"\"\
260
+ \n Shift/move the line strings from one or more image sides.\n\n \
261
+ \ Parameters\n ----------\n top : None or int, optional\n \
262
+ \ Amount of pixels by which to shift all bounding boxes from the\n \
263
+ \ top.\n\n right : None or int, optional\n Amount of pixels\
264
+ \ by which to shift all bounding boxes from the\n right.\n\n \
265
+ \ bottom : None or int, optional\n Amount of pixels by which to shift\
266
+ \ all bounding boxes from the\n bottom.\n\n left : None or int,\
267
+ \ optional\n Amount of pixels by which to shift all bounding boxes\
268
+ \ from the\n left.\n\n Returns\n -------\n imgaug.augmentables.lines.LineStringsOnImage\n\
269
+ \ Shifted line strings.\n\n \"\"\"\n lss_new = [ls.shift(top=top,\
270
+ \ right=right, bottom=bottom, left=left)\n for ls in self.line_strings]\n\
271
+ \ return LineStringsOnImage(lss_new, shape=self.shape)"
272
+ - "def cross_entropy_reward_loss(logits, actions, rewards, name=None):\n \"\"\
273
+ \"Calculate the loss for Policy Gradient Network.\n\n Parameters\n ----------\n\
274
+ \ logits : tensor\n The network outputs without softmax. This function\
275
+ \ implements softmax inside.\n actions : tensor or placeholder\n The\
276
+ \ agent actions.\n rewards : tensor or placeholder\n The rewards.\n\n\
277
+ \ Returns\n --------\n Tensor\n The TensorFlow loss function.\n\
278
+ \n Examples\n ----------\n >>> states_batch_pl = tf.placeholder(tf.float32,\
279
+ \ shape=[None, D])\n >>> network = InputLayer(states_batch_pl, name='input')\n\
280
+ \ >>> network = DenseLayer(network, n_units=H, act=tf.nn.relu, name='relu1')\n\
281
+ \ >>> network = DenseLayer(network, n_units=3, name='out')\n >>> probs =\
282
+ \ network.outputs\n >>> sampling_prob = tf.nn.softmax(probs)\n >>> actions_batch_pl\
283
+ \ = tf.placeholder(tf.int32, shape=[None])\n >>> discount_rewards_batch_pl\
284
+ \ = tf.placeholder(tf.float32, shape=[None])\n >>> loss = tl.rein.cross_entropy_reward_loss(probs,\
285
+ \ actions_batch_pl, discount_rewards_batch_pl)\n >>> train_op = tf.train.RMSPropOptimizer(learning_rate,\
286
+ \ decay_rate).minimize(loss)\n\n \"\"\"\n cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=actions,\
287
+ \ logits=logits, name=name)\n\n return tf.reduce_sum(tf.multiply(cross_entropy,\
288
+ \ rewards))"
289
+ - source_sentence: "Translate an index into coordinates, using the given coordinate\
290
+ \ system.\n\n Similar to ``numpy.unravel_index``.\n\n :param index: (int) The\
291
+ \ index of the point. The coordinates are expressed as a \n single index\
292
+ \ by using the dimensions as a mixed radix definition. For \n example,\
293
+ \ in dimensions 42x10, the point [1, 4] is index \n 1*420 + 4*10 = 460.\n\
294
+ \n :param dimensions (list of ints) The coordinate system.\n\n :returns: (list)\
295
+ \ of coordinates of length ``len(dimensions)``."
296
+ sentences:
297
+ - "def coordinatesFromIndex(index, dimensions):\n \"\"\"\n Translate an index\
298
+ \ into coordinates, using the given coordinate system.\n\n Similar to ``numpy.unravel_index``.\n\
299
+ \n :param index: (int) The index of the point. The coordinates are expressed\
300
+ \ as a \n single index by using the dimensions as a mixed radix definition.\
301
+ \ For \n example, in dimensions 42x10, the point [1, 4] is index \n \
302
+ \ 1*420 + 4*10 = 460.\n\n :param dimensions (list of ints) The coordinate\
303
+ \ system.\n\n :returns: (list) of coordinates of length ``len(dimensions)``.\n\
304
+ \ \"\"\"\n coordinates = [0] * len(dimensions)\n\n shifted = index\n for i\
305
+ \ in xrange(len(dimensions) - 1, 0, -1):\n coordinates[i] = shifted % dimensions[i]\n\
306
+ \ shifted = shifted / dimensions[i]\n\n coordinates[0] = shifted\n\n return\
307
+ \ coordinates"
308
+ - "def step(self, observation, **extra_feed):\n \"\"\"\n Compute next\
309
+ \ action(s) given the observation(s)\n\n Parameters:\n ----------\n\
310
+ \n observation observation data (either single or a batch)\n\n \
311
+ \ **extra_feed additional data such as state or mask (names of the arguments\
312
+ \ should match the ones in constructor, see __init__)\n\n Returns:\n \
313
+ \ -------\n (action, value estimate, next state, negative log likelihood\
314
+ \ of the action under current policy parameters) tuple\n \"\"\"\n\n \
315
+ \ a, v, state, neglogp = self._evaluate([self.action, self.vf, self.state,\
316
+ \ self.neglogp], observation, **extra_feed)\n if state.size == 0:\n \
317
+ \ state = None\n return a, v, state, neglogp"
318
+ - "def pretty_eta(seconds_left):\n \"\"\"Print the number of seconds in human\
319
+ \ readable format.\n\n Examples:\n 2 days\n 2 hours and 37 minutes\n\
320
+ \ less than a minute\n\n Paramters\n ---------\n seconds_left: int\n\
321
+ \ Number of seconds to be converted to the ETA\n Returns\n -------\n\
322
+ \ eta: str\n String representing the pretty ETA.\n \"\"\"\n minutes_left\
323
+ \ = seconds_left // 60\n seconds_left %= 60\n hours_left = minutes_left\
324
+ \ // 60\n minutes_left %= 60\n days_left = hours_left // 24\n hours_left\
325
+ \ %= 24\n\n def helper(cnt, name):\n return \"{} {}{}\".format(str(cnt),\
326
+ \ name, ('s' if cnt > 1 else ''))\n\n if days_left > 0:\n msg = helper(days_left,\
327
+ \ 'day')\n if hours_left > 0:\n msg += ' and ' + helper(hours_left,\
328
+ \ 'hour')\n return msg\n if hours_left > 0:\n msg = helper(hours_left,\
329
+ \ 'hour')\n if minutes_left > 0:\n msg += ' and ' + helper(minutes_left,\
330
+ \ 'minute')\n return msg\n if minutes_left > 0:\n return helper(minutes_left,\
331
+ \ 'minute')\n return 'less than a minute'"
332
+ - source_sentence: Validates control dictionary for the experiment context
333
+ sentences:
334
+ - "def load_file_list(path=None, regx='\\.jpg', printable=True, keep_prefix=False):\n\
335
+ \ r\"\"\"Return a file list in a folder by given a path and regular expression.\n\
336
+ \n Parameters\n ----------\n path : str or None\n A folder path,\
337
+ \ if `None`, use the current directory.\n regx : str\n The regx of file\
338
+ \ name.\n printable : boolean\n Whether to print the files infomation.\n\
339
+ \ keep_prefix : boolean\n Whether to keep path in the file name.\n\n\
340
+ \ Examples\n ----------\n >>> file_list = tl.files.load_file_list(path=None,\
341
+ \ regx='w1pre_[0-9]+\\.(npz)')\n\n \"\"\"\n if path is None:\n path\
342
+ \ = os.getcwd()\n file_list = os.listdir(path)\n return_list = []\n for\
343
+ \ _, f in enumerate(file_list):\n if re.search(regx, f):\n return_list.append(f)\n\
344
+ \ # return_list.sort()\n if keep_prefix:\n for i, f in enumerate(return_list):\n\
345
+ \ return_list[i] = os.path.join(path, f)\n\n if printable:\n \
346
+ \ logging.info('Match file list = %s' % return_list)\n logging.info('Number\
347
+ \ of files = %d' % len(return_list))\n return return_list"
348
+ - "def getCompletingSwarms(self):\n \"\"\"Return the list of all completing swarms.\n\
349
+ \n Parameters:\n ---------------------------------------------------------------------\n\
350
+ \ retval: list of active swarm Ids\n \"\"\"\n swarmIds = []\n for\
351
+ \ swarmId, info in self._state['swarms'].iteritems():\n if info['status']\
352
+ \ == 'completing':\n swarmIds.append(swarmId)\n\n return swarmIds"
353
+ - "def __validateExperimentControl(self, control):\n \"\"\" Validates control\
354
+ \ dictionary for the experiment context\"\"\"\n # Validate task list\n taskList\
355
+ \ = control.get('tasks', None)\n if taskList is not None:\n taskLabelsList\
356
+ \ = []\n\n for task in taskList:\n validateOpfJsonValue(task, \"opfTaskSchema.json\"\
357
+ )\n validateOpfJsonValue(task['taskControl'], \"opfTaskControlSchema.json\"\
358
+ )\n\n taskLabel = task['taskLabel']\n\n assert isinstance(taskLabel,\
359
+ \ types.StringTypes), \\\n \"taskLabel type: %r\" % type(taskLabel)\n\
360
+ \ assert len(taskLabel) > 0, \"empty string taskLabel not is allowed\"\n\
361
+ \n taskLabelsList.append(taskLabel.lower())\n\n taskLabelDuplicates\
362
+ \ = filter(lambda x: taskLabelsList.count(x) > 1,\n \
363
+ \ taskLabelsList)\n assert len(taskLabelDuplicates) == 0, \\\n \
364
+ \ \"Duplcate task labels are not allowed: %s\" % taskLabelDuplicates\n\
365
+ \n return"
366
+ pipeline_tag: sentence-similarity
367
+ library_name: sentence-transformers
368
+ ---
369
+
370
+ # SentenceTransformer based on answerdotai/ModernBERT-base
371
+
372
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the code_search_net dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
373
+
374
+ ## Model Details
375
+
376
+ ### Model Description
377
+ - **Model Type:** Sentence Transformer
378
+ - **Base model:** [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) <!-- at revision 8949b909ec900327062f0ebf497f51aef5e6f0c8 -->
379
+ - **Maximum Sequence Length:** 4096 tokens
380
+ - **Output Dimensionality:** 768 dimensions
381
+ - **Similarity Function:** Cosine Similarity
382
+ - **Training Dataset:**
383
+ - code_search_net
384
+ <!-- - **Language:** Unknown -->
385
+ <!-- - **License:** Unknown -->
386
+
387
+ ### Model Sources
388
+
389
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
390
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
391
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
392
+
393
+ ### Full Model Architecture
394
+
395
+ ```
396
+ SentenceTransformer(
397
+ (0): Transformer({'max_seq_length': 4096, 'do_lower_case': False}) with Transformer model: ModernBertModel
398
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
399
+ )
400
+ ```
401
+
402
+ ## Usage
403
+
404
+ ### Direct Usage (Sentence Transformers)
405
+
406
+ First install the Sentence Transformers library:
407
+
408
+ ```bash
409
+ pip install -U sentence-transformers
410
+ ```
411
+
412
+ Then you can load this model and run inference.
413
+ ```python
414
+ from sentence_transformers import SentenceTransformer
415
+
416
+ # Download from the 🤗 Hub
417
+ model = SentenceTransformer("juanwisz/modernbert-python-code-retrieval")
418
+ # Run inference
419
+ sentences = [
420
+ 'Validates control dictionary for the experiment context',
421
+ 'def __validateExperimentControl(self, control):\n """ Validates control dictionary for the experiment context"""\n # Validate task list\n taskList = control.get(\'tasks\', None)\n if taskList is not None:\n taskLabelsList = []\n\n for task in taskList:\n validateOpfJsonValue(task, "opfTaskSchema.json")\n validateOpfJsonValue(task[\'taskControl\'], "opfTaskControlSchema.json")\n\n taskLabel = task[\'taskLabel\']\n\n assert isinstance(taskLabel, types.StringTypes), \\\n "taskLabel type: %r" % type(taskLabel)\n assert len(taskLabel) > 0, "empty string taskLabel not is allowed"\n\n taskLabelsList.append(taskLabel.lower())\n\n taskLabelDuplicates = filter(lambda x: taskLabelsList.count(x) > 1,\n taskLabelsList)\n assert len(taskLabelDuplicates) == 0, \\\n "Duplcate task labels are not allowed: %s" % taskLabelDuplicates\n\n return',
422
+ 'def load_file_list(path=None, regx=\'\\.jpg\', printable=True, keep_prefix=False):\n r"""Return a file list in a folder by given a path and regular expression.\n\n Parameters\n ----------\n path : str or None\n A folder path, if `None`, use the current directory.\n regx : str\n The regx of file name.\n printable : boolean\n Whether to print the files infomation.\n keep_prefix : boolean\n Whether to keep path in the file name.\n\n Examples\n ----------\n >>> file_list = tl.files.load_file_list(path=None, regx=\'w1pre_[0-9]+\\.(npz)\')\n\n """\n if path is None:\n path = os.getcwd()\n file_list = os.listdir(path)\n return_list = []\n for _, f in enumerate(file_list):\n if re.search(regx, f):\n return_list.append(f)\n # return_list.sort()\n if keep_prefix:\n for i, f in enumerate(return_list):\n return_list[i] = os.path.join(path, f)\n\n if printable:\n logging.info(\'Match file list = %s\' % return_list)\n logging.info(\'Number of files = %d\' % len(return_list))\n return return_list',
423
+ ]
424
+ embeddings = model.encode(sentences)
425
+ print(embeddings.shape)
426
+ # [3, 768]
427
+
428
+ # Get the similarity scores for the embeddings
429
+ similarities = model.similarity(embeddings, embeddings)
430
+ print(similarities.shape)
431
+ # [3, 3]
432
+ ```
433
+
434
+ <!--
435
+ ### Direct Usage (Transformers)
436
+
437
+ <details><summary>Click to see the direct usage in Transformers</summary>
438
+
439
+ </details>
440
+ -->
441
+
442
+ <!--
443
+ ### Downstream Usage (Sentence Transformers)
444
+
445
+ You can finetune this model on your own dataset.
446
+
447
+ <details><summary>Click to expand</summary>
448
+
449
+ </details>
450
+ -->
451
+
452
+ <!--
453
+ ### Out-of-Scope Use
454
+
455
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
456
+ -->
457
+
458
+ <!--
459
+ ## Bias, Risks and Limitations
460
+
461
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
462
+ -->
463
+
464
+ <!--
465
+ ### Recommendations
466
+
467
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
468
+ -->
469
+
470
+ ## Training Details
471
+
472
+ ### Training Dataset
473
+
474
+ #### code_search_net
475
+
476
+ * Dataset: code_search_net
477
+ * Size: 412,178 training samples
478
+ * Columns: <code>query</code> and <code>positive</code>
479
+ * Approximate statistics based on the first 1000 samples:
480
+ | | query | positive |
481
+ |:--------|:------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|
482
+ | type | string | string |
483
+ | details | <ul><li>min: 4 tokens</li><li>mean: 73.72 tokens</li><li>max: 2258 tokens</li></ul> | <ul><li>min: 46 tokens</li><li>mean: 300.87 tokens</li><li>max: 3119 tokens</li></ul> |
484
+ * Samples:
485
+ | query | positive |
486
+ |:------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
487
+ | <code>Extracts the list of arguments that start with any of the specified prefix values</code> | <code>def findArgs(args, prefixes):<br> """<br> Extracts the list of arguments that start with any of the specified prefix values<br> """<br> return list([<br> arg for arg in args<br> if len([p for p in prefixes if arg.lower().startswith(p.lower())]) > 0<br> ])</code> |
488
+ | <code>Removes any arguments in the supplied list that are contained in the specified blacklist</code> | <code>def stripArgs(args, blacklist):<br> """<br> Removes any arguments in the supplied list that are contained in the specified blacklist<br> """<br> blacklist = [b.lower() for b in blacklist]<br> return list([arg for arg in args if arg.lower() not in blacklist])</code> |
489
+ | <code>Executes a child process and captures its output</code> | <code>def capture(command, input=None, cwd=None, shell=False, raiseOnError=False):<br> """<br> Executes a child process and captures its output<br> """<br> <br> # Attempt to execute the child process<br> proc = subprocess.Popen(command, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=cwd, shell=shell, universal_newlines=True)<br> (stdout, stderr) = proc.communicate(input)<br> <br> # If the child process failed and we were asked to raise an exception, do so<br> if raiseOnError == True and proc.returncode != 0:<br> raise Exception(<br> 'child process ' + str(command) +<br> ' failed with exit code ' + str(proc.returncode) +<br> '\nstdout: "' + stdout + '"' +<br> '\nstderr: "' + stderr + '"'<br> )<br> <br> return CommandOutput(proc.returncode, stdout, stderr)</code> |
490
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
491
+ ```json
492
+ {
493
+ "scale": 20.0,
494
+ "similarity_fct": "cos_sim"
495
+ }
496
+ ```
497
+
498
+ ### Evaluation Dataset
499
+
500
+ #### code_search_net
501
+
502
+ * Dataset: code_search_net
503
+ * Size: 23,107 evaluation samples
504
+ * Columns: <code>query</code> and <code>positive</code>
505
+ * Approximate statistics based on the first 1000 samples:
506
+ | | query | positive |
507
+ |:--------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
508
+ | type | string | string |
509
+ | details | <ul><li>min: 5 tokens</li><li>mean: 168.27 tokens</li><li>max: 2118 tokens</li></ul> | <ul><li>min: 48 tokens</li><li>mean: 467.9 tokens</li><li>max: 4096 tokens</li></ul> |
510
+ * Samples:
511
+ | query | positive |
512
+ |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
513
+ | <code>Train a deepq model.<br><br> Parameters<br> -------<br> env: gym.Env<br> environment to train on<br> network: string or a function<br> neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models<br> (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which<br> will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)<br> seed: int or None<br> prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.<br> lr: float<br> learning rate for adam optimizer<br> total_timesteps: int<br> number of env steps to optimizer for<br> buffer_size: int<br> size of the replay buffer<br> exploration_fraction: float<br> fraction of entire training period over which the exploration rate is annealed<br> exploration_final_eps: float<br> final value of ra...</code> | <code>def learn(env,<br> network,<br> seed=None,<br> lr=5e-4,<br> total_timesteps=100000,<br> buffer_size=50000,<br> exploration_fraction=0.1,<br> exploration_final_eps=0.02,<br> train_freq=1,<br> batch_size=32,<br> print_freq=100,<br> checkpoint_freq=10000,<br> checkpoint_path=None,<br> learning_starts=1000,<br> gamma=1.0,<br> target_network_update_freq=500,<br> prioritized_replay=False,<br> prioritized_replay_alpha=0.6,<br> prioritized_replay_beta0=0.4,<br> prioritized_replay_beta_iters=None,<br> prioritized_replay_eps=1e-6,<br> param_noise=False,<br> callback=None,<br> load_path=None,<br> **network_kwargs<br> ):<br> """Train a deepq model.<br><br> Parameters<br> -------<br> env: gym.Env<br> environment to train on<br> network: string or a function<br> neural network to use as a q function approximator. If string, has to be one of the ...</code> |
514
+ | <code>Save model to a pickle located at `path`</code> | <code>def save_act(self, path=None):<br> """Save model to a pickle located at `path`"""<br> if path is None:<br> path = os.path.join(logger.get_dir(), "model.pkl")<br><br> with tempfile.TemporaryDirectory() as td:<br> save_variables(os.path.join(td, "model"))<br> arc_name = os.path.join(td, "packed.zip")<br> with zipfile.ZipFile(arc_name, 'w') as zipf:<br> for root, dirs, files in os.walk(td):<br> for fname in files:<br> file_path = os.path.join(root, fname)<br> if file_path != arc_name:<br> zipf.write(file_path, os.path.relpath(file_path, td))<br> with open(arc_name, "rb") as f:<br> model_data = f.read()<br> with open(path, "wb") as f:<br> cloudpickle.dump((model_data, self._act_params), f)</code> |
515
+ | <code>CNN from Nature paper.</code> | <code>def nature_cnn(unscaled_images, **conv_kwargs):<br> """<br> CNN from Nature paper.<br> """<br> scaled_images = tf.cast(unscaled_images, tf.float32) / 255.<br> activ = tf.nn.relu<br> h = activ(conv(scaled_images, 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2),<br> **conv_kwargs))<br> h2 = activ(conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2), **conv_kwargs))<br> h3 = activ(conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2), **conv_kwargs))<br> h3 = conv_to_fc(h3)<br> return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2)))</code> |
516
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
517
+ ```json
518
+ {
519
+ "scale": 20.0,
520
+ "similarity_fct": "cos_sim"
521
+ }
522
+ ```
523
+
524
+ ### Training Hyperparameters
525
+ #### Non-Default Hyperparameters
526
+
527
+ - `eval_strategy`: epoch
528
+ - `per_device_train_batch_size`: 4
529
+ - `gradient_accumulation_steps`: 4
530
+ - `learning_rate`: 2e-05
531
+ - `num_train_epochs`: 10
532
+ - `warmup_steps`: 1000
533
+ - `fp16`: True
534
+
535
+ #### All Hyperparameters
536
+ <details><summary>Click to expand</summary>
537
+
538
+ - `overwrite_output_dir`: False
539
+ - `do_predict`: False
540
+ - `eval_strategy`: epoch
541
+ - `prediction_loss_only`: True
542
+ - `per_device_train_batch_size`: 4
543
+ - `per_device_eval_batch_size`: 8
544
+ - `per_gpu_train_batch_size`: None
545
+ - `per_gpu_eval_batch_size`: None
546
+ - `gradient_accumulation_steps`: 4
547
+ - `eval_accumulation_steps`: None
548
+ - `torch_empty_cache_steps`: None
549
+ - `learning_rate`: 2e-05
550
+ - `weight_decay`: 0.0
551
+ - `adam_beta1`: 0.9
552
+ - `adam_beta2`: 0.999
553
+ - `adam_epsilon`: 1e-08
554
+ - `max_grad_norm`: 1.0
555
+ - `num_train_epochs`: 10
556
+ - `max_steps`: -1
557
+ - `lr_scheduler_type`: linear
558
+ - `lr_scheduler_kwargs`: {}
559
+ - `warmup_ratio`: 0.0
560
+ - `warmup_steps`: 1000
561
+ - `log_level`: passive
562
+ - `log_level_replica`: warning
563
+ - `log_on_each_node`: True
564
+ - `logging_nan_inf_filter`: True
565
+ - `save_safetensors`: True
566
+ - `save_on_each_node`: False
567
+ - `save_only_model`: False
568
+ - `restore_callback_states_from_checkpoint`: False
569
+ - `no_cuda`: False
570
+ - `use_cpu`: False
571
+ - `use_mps_device`: False
572
+ - `seed`: 42
573
+ - `data_seed`: None
574
+ - `jit_mode_eval`: False
575
+ - `use_ipex`: False
576
+ - `bf16`: False
577
+ - `fp16`: True
578
+ - `fp16_opt_level`: O1
579
+ - `half_precision_backend`: auto
580
+ - `bf16_full_eval`: False
581
+ - `fp16_full_eval`: False
582
+ - `tf32`: None
583
+ - `local_rank`: 0
584
+ - `ddp_backend`: None
585
+ - `tpu_num_cores`: None
586
+ - `tpu_metrics_debug`: False
587
+ - `debug`: []
588
+ - `dataloader_drop_last`: False
589
+ - `dataloader_num_workers`: 0
590
+ - `dataloader_prefetch_factor`: None
591
+ - `past_index`: -1
592
+ - `disable_tqdm`: False
593
+ - `remove_unused_columns`: True
594
+ - `label_names`: None
595
+ - `load_best_model_at_end`: False
596
+ - `ignore_data_skip`: False
597
+ - `fsdp`: []
598
+ - `fsdp_min_num_params`: 0
599
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
600
+ - `fsdp_transformer_layer_cls_to_wrap`: None
601
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
602
+ - `deepspeed`: None
603
+ - `label_smoothing_factor`: 0.0
604
+ - `optim`: adamw_torch
605
+ - `optim_args`: None
606
+ - `adafactor`: False
607
+ - `group_by_length`: False
608
+ - `length_column_name`: length
609
+ - `ddp_find_unused_parameters`: None
610
+ - `ddp_bucket_cap_mb`: None
611
+ - `ddp_broadcast_buffers`: False
612
+ - `dataloader_pin_memory`: True
613
+ - `dataloader_persistent_workers`: False
614
+ - `skip_memory_metrics`: True
615
+ - `use_legacy_prediction_loop`: False
616
+ - `push_to_hub`: False
617
+ - `resume_from_checkpoint`: None
618
+ - `hub_model_id`: None
619
+ - `hub_strategy`: every_save
620
+ - `hub_private_repo`: None
621
+ - `hub_always_push`: False
622
+ - `gradient_checkpointing`: False
623
+ - `gradient_checkpointing_kwargs`: None
624
+ - `include_inputs_for_metrics`: False
625
+ - `include_for_metrics`: []
626
+ - `eval_do_concat_batches`: True
627
+ - `fp16_backend`: auto
628
+ - `push_to_hub_model_id`: None
629
+ - `push_to_hub_organization`: None
630
+ - `mp_parameters`:
631
+ - `auto_find_batch_size`: False
632
+ - `full_determinism`: False
633
+ - `torchdynamo`: None
634
+ - `ray_scope`: last
635
+ - `ddp_timeout`: 1800
636
+ - `torch_compile`: False
637
+ - `torch_compile_backend`: None
638
+ - `torch_compile_mode`: None
639
+ - `dispatch_batches`: None
640
+ - `split_batches`: None
641
+ - `include_tokens_per_second`: False
642
+ - `include_num_input_tokens_seen`: False
643
+ - `neftune_noise_alpha`: None
644
+ - `optim_target_modules`: None
645
+ - `batch_eval_metrics`: False
646
+ - `eval_on_start`: False
647
+ - `use_liger_kernel`: False
648
+ - `eval_use_gather_object`: False
649
+ - `average_tokens_across_devices`: False
650
+ - `prompts`: None
651
+ - `batch_sampler`: batch_sampler
652
+ - `multi_dataset_batch_sampler`: proportional
653
+
654
+ </details>
655
+
656
+ ### Training Logs
657
+ <details><summary>Click to expand</summary>
658
+
659
+ | Epoch | Step | Training Loss | Validation Loss |
660
+ |:------:|:-----:|:-------------:|:---------------:|
661
+ | 0.0078 | 200 | 0.634 | - |
662
+ | 0.0155 | 400 | 0.0046 | - |
663
+ | 0.0233 | 600 | 0.0009 | - |
664
+ | 0.0311 | 800 | 0.0004 | - |
665
+ | 0.0388 | 1000 | 0.0001 | - |
666
+ | 0.0466 | 1200 | 0.0002 | - |
667
+ | 0.0543 | 1400 | 0.0001 | - |
668
+ | 0.0621 | 1600 | 0.0001 | - |
669
+ | 0.0699 | 1800 | 0.0001 | - |
670
+ | 0.0776 | 2000 | 0.0 | - |
671
+ | 0.0854 | 2200 | 0.0 | - |
672
+ | 0.0932 | 2400 | 0.0 | - |
673
+ | 0.1009 | 2600 | 0.0 | - |
674
+ | 0.1087 | 2800 | 0.0005 | - |
675
+ | 0.1165 | 3000 | 0.0005 | - |
676
+ | 0.1242 | 3200 | 0.0002 | - |
677
+ | 0.1320 | 3400 | 0.0 | - |
678
+ | 0.1397 | 3600 | 0.0 | - |
679
+ | 0.1475 | 3800 | 0.0 | - |
680
+ | 0.1553 | 4000 | 0.0001 | - |
681
+ | 0.1630 | 4200 | 0.0 | - |
682
+ | 0.1708 | 4400 | 0.0001 | - |
683
+ | 0.1786 | 4600 | 0.0001 | - |
684
+ | 0.1863 | 4800 | 0.0 | - |
685
+ | 0.1941 | 5000 | 0.0 | - |
686
+ | 0.2019 | 5200 | 0.0 | - |
687
+ | 0.2096 | 5400 | 0.0 | - |
688
+ | 0.2174 | 5600 | 0.0 | - |
689
+ | 0.2251 | 5800 | 0.0 | - |
690
+ | 0.2329 | 6000 | 0.0004 | - |
691
+ | 0.2407 | 6200 | 0.0 | - |
692
+ | 0.2484 | 6400 | 0.0001 | - |
693
+ | 0.2562 | 6600 | 0.0 | - |
694
+ | 0.2640 | 6800 | 0.0 | - |
695
+ | 0.2717 | 7000 | 0.0 | - |
696
+ | 0.2795 | 7200 | 0.0 | - |
697
+ | 0.2873 | 7400 | 0.0 | - |
698
+ | 0.2950 | 7600 | 0.0 | - |
699
+ | 0.3028 | 7800 | 0.0 | - |
700
+ | 0.3105 | 8000 | 0.0 | - |
701
+ | 0.3183 | 8200 | 0.0 | - |
702
+ | 0.3261 | 8400 | 0.0004 | - |
703
+ | 0.3338 | 8600 | 0.0 | - |
704
+ | 0.3416 | 8800 | 0.0 | - |
705
+ | 0.3494 | 9000 | 0.0 | - |
706
+ | 0.3571 | 9200 | 0.0 | - |
707
+ | 0.3649 | 9400 | 0.0 | - |
708
+ | 0.3727 | 9600 | 0.0 | - |
709
+ | 0.3804 | 9800 | 0.0 | - |
710
+ | 0.3882 | 10000 | 0.0 | - |
711
+ | 0.3959 | 10200 | 0.0 | - |
712
+ | 0.4037 | 10400 | 0.0 | - |
713
+ | 0.4115 | 10600 | 0.0 | - |
714
+ | 0.4192 | 10800 | 0.0 | - |
715
+ | 0.4270 | 11000 | 0.0 | - |
716
+ | 0.4348 | 11200 | 0.0 | - |
717
+ | 0.4425 | 11400 | 0.0 | - |
718
+ | 0.4503 | 11600 | 0.0 | - |
719
+ | 0.4581 | 11800 | 0.0 | - |
720
+ | 0.4658 | 12000 | 0.0 | - |
721
+ | 0.4736 | 12200 | 0.0 | - |
722
+ | 0.4813 | 12400 | 0.0 | - |
723
+ | 0.4891 | 12600 | 0.0005 | - |
724
+ | 0.4969 | 12800 | 0.0 | - |
725
+ | 0.5046 | 13000 | 0.0 | - |
726
+ | 0.5124 | 13200 | 0.0001 | - |
727
+ | 0.5202 | 13400 | 0.0 | - |
728
+ | 0.5279 | 13600 | 0.0 | - |
729
+ | 0.5357 | 13800 | 0.0 | - |
730
+ | 0.5435 | 14000 | 0.0 | - |
731
+ | 0.5512 | 14200 | 0.0 | - |
732
+ | 0.5590 | 14400 | 0.0004 | - |
733
+ | 0.5667 | 14600 | 0.0 | - |
734
+ | 0.5745 | 14800 | 0.0 | - |
735
+ | 0.5823 | 15000 | 0.0 | - |
736
+ | 0.5900 | 15200 | 0.0 | - |
737
+ | 0.5978 | 15400 | 0.0 | - |
738
+ | 0.6056 | 15600 | 0.0 | - |
739
+ | 0.6133 | 15800 | 0.0 | - |
740
+ | 0.6211 | 16000 | 0.0 | - |
741
+ | 0.6289 | 16200 | 0.0 | - |
742
+ | 0.6366 | 16400 | 0.0006 | - |
743
+ | 0.6444 | 16600 | 0.0 | - |
744
+ | 0.6521 | 16800 | 0.0005 | - |
745
+ | 0.6599 | 17000 | 0.0 | - |
746
+ | 0.6677 | 17200 | 0.0 | - |
747
+ | 0.6754 | 17400 | 0.0 | - |
748
+ | 0.6832 | 17600 | 0.0 | - |
749
+ | 0.6910 | 17800 | 0.0 | - |
750
+ | 0.6987 | 18000 | 0.0005 | - |
751
+ | 0.7065 | 18200 | 0.0001 | - |
752
+ | 0.7143 | 18400 | 0.0 | - |
753
+ | 0.7220 | 18600 | 0.0 | - |
754
+ | 0.7298 | 18800 | 0.0 | - |
755
+ | 0.7375 | 19000 | 0.0 | - |
756
+ | 0.7453 | 19200 | 0.0 | - |
757
+ | 0.7531 | 19400 | 0.0 | - |
758
+ | 0.7608 | 19600 | 0.0 | - |
759
+ | 0.7686 | 19800 | 0.0001 | - |
760
+ | 0.7764 | 20000 | 0.0 | - |
761
+ | 0.7841 | 20200 | 0.0 | - |
762
+ | 0.7919 | 20400 | 0.0 | - |
763
+ | 0.7997 | 20600 | 0.0004 | - |
764
+ | 0.8074 | 20800 | 0.0 | - |
765
+ | 0.8152 | 21000 | 0.0 | - |
766
+ | 0.8229 | 21200 | 0.0 | - |
767
+ | 0.8307 | 21400 | 0.0009 | - |
768
+ | 0.8385 | 21600 | 0.0 | - |
769
+ | 0.8462 | 21800 | 0.0 | - |
770
+ | 0.8540 | 22000 | 0.0 | - |
771
+ | 0.8618 | 22200 | 0.0 | - |
772
+ | 0.8695 | 22400 | 0.0002 | - |
773
+ | 0.8773 | 22600 | 0.0 | - |
774
+ | 0.8851 | 22800 | 0.0 | - |
775
+ | 0.8928 | 23000 | 0.0001 | - |
776
+ | 0.9006 | 23200 | 0.0 | - |
777
+ | 0.9083 | 23400 | 0.0 | - |
778
+ | 0.9161 | 23600 | 0.0 | - |
779
+ | 0.9239 | 23800 | 0.0 | - |
780
+ | 0.9316 | 24000 | 0.0 | - |
781
+ | 0.9394 | 24200 | 0.0 | - |
782
+ | 0.9472 | 24400 | 0.0 | - |
783
+ | 0.9549 | 24600 | 0.0 | - |
784
+ | 0.9627 | 24800 | 0.0 | - |
785
+ | 0.9704 | 25000 | 0.0 | - |
786
+ | 0.9782 | 25200 | 0.0 | - |
787
+ | 0.9860 | 25400 | 0.0 | - |
788
+ | 0.9937 | 25600 | 0.0 | - |
789
+ | 1.0 | 25762 | - | 0.0001 |
790
+ | 1.0015 | 25800 | 0.0005 | - |
791
+ | 1.0092 | 26000 | 0.0 | - |
792
+ | 1.0170 | 26200 | 0.0 | - |
793
+ | 1.0248 | 26400 | 0.0 | - |
794
+ | 1.0325 | 26600 | 0.0 | - |
795
+ | 1.0403 | 26800 | 0.0 | - |
796
+ | 1.0481 | 27000 | 0.0 | - |
797
+ | 1.0558 | 27200 | 0.0 | - |
798
+ | 1.0636 | 27400 | 0.0 | - |
799
+ | 1.0713 | 27600 | 0.0 | - |
800
+ | 1.0791 | 27800 | 0.0 | - |
801
+ | 1.0869 | 28000 | 0.0 | - |
802
+ | 1.0946 | 28200 | 0.0 | - |
803
+ | 1.1024 | 28400 | 0.0 | - |
804
+ | 1.1102 | 28600 | 0.0 | - |
805
+ | 1.1179 | 28800 | 0.0 | - |
806
+ | 1.1257 | 29000 | 0.0 | - |
807
+ | 1.1335 | 29200 | 0.0 | - |
808
+ | 1.1412 | 29400 | 0.0 | - |
809
+ | 1.1490 | 29600 | 0.0 | - |
810
+ | 1.1567 | 29800 | 0.0 | - |
811
+ | 1.1645 | 30000 | 0.0 | - |
812
+ | 1.1723 | 30200 | 0.0 | - |
813
+ | 1.1800 | 30400 | 0.0 | - |
814
+ | 1.1878 | 30600 | 0.0 | - |
815
+ | 1.1956 | 30800 | 0.0 | - |
816
+ | 1.2033 | 31000 | 0.0 | - |
817
+ | 1.2111 | 31200 | 0.0 | - |
818
+ | 1.2189 | 31400 | 0.0 | - |
819
+ | 1.2266 | 31600 | 0.0004 | - |
820
+ | 1.2344 | 31800 | 0.0004 | - |
821
+ | 1.2421 | 32000 | 0.0 | - |
822
+ | 1.2499 | 32200 | 0.0 | - |
823
+ | 1.2577 | 32400 | 0.0 | - |
824
+ | 1.2654 | 32600 | 0.0 | - |
825
+ | 1.2732 | 32800 | 0.0 | - |
826
+ | 1.2810 | 33000 | 0.0 | - |
827
+ | 1.2887 | 33200 | 0.0 | - |
828
+ | 1.2965 | 33400 | 0.0 | - |
829
+ | 1.3043 | 33600 | 0.0 | - |
830
+ | 1.3120 | 33800 | 0.0 | - |
831
+ | 1.3198 | 34000 | 0.0 | - |
832
+ | 1.3275 | 34200 | 0.0 | - |
833
+ | 1.3353 | 34400 | 0.0 | - |
834
+ | 1.3431 | 34600 | 0.0 | - |
835
+ | 1.3508 | 34800 | 0.0004 | - |
836
+ | 1.3586 | 35000 | 0.0005 | - |
837
+ | 1.3664 | 35200 | 0.0004 | - |
838
+ | 1.3741 | 35400 | 0.0011 | - |
839
+ | 1.3819 | 35600 | 0.0 | - |
840
+ | 1.3897 | 35800 | 0.0 | - |
841
+ | 1.3974 | 36000 | 0.0 | - |
842
+ | 1.4052 | 36200 | 0.0 | - |
843
+ | 1.4129 | 36400 | 0.0 | - |
844
+ | 1.4207 | 36600 | 0.0 | - |
845
+ | 1.4285 | 36800 | 0.0 | - |
846
+ | 1.4362 | 37000 | 0.0 | - |
847
+ | 1.4440 | 37200 | 0.0001 | - |
848
+ | 1.4518 | 37400 | 0.0 | - |
849
+ | 1.4595 | 37600 | 0.0 | - |
850
+ | 1.4673 | 37800 | 0.0 | - |
851
+ | 1.4751 | 38000 | 0.0 | - |
852
+ | 1.4828 | 38200 | 0.0004 | - |
853
+ | 1.4906 | 38400 | 0.0003 | - |
854
+ | 1.4983 | 38600 | 0.0 | - |
855
+ | 1.5061 | 38800 | 0.0 | - |
856
+ | 1.5139 | 39000 | 0.0 | - |
857
+ | 1.5216 | 39200 | 0.0 | - |
858
+ | 1.5294 | 39400 | 0.0004 | - |
859
+ | 1.5372 | 39600 | 0.0004 | - |
860
+ | 1.5449 | 39800 | 0.0 | - |
861
+ | 1.5527 | 40000 | 0.0 | - |
862
+ | 1.5605 | 40200 | 0.0 | - |
863
+ | 1.5682 | 40400 | 0.0 | - |
864
+ | 1.5760 | 40600 | 0.0009 | - |
865
+ | 1.5837 | 40800 | 0.0 | - |
866
+ | 1.5915 | 41000 | 0.0009 | - |
867
+ | 1.5993 | 41200 | 0.0 | - |
868
+ | 1.6070 | 41400 | 0.0 | - |
869
+ | 1.6148 | 41600 | 0.0 | - |
870
+ | 1.6226 | 41800 | 0.0 | - |
871
+ | 1.6303 | 42000 | 0.0 | - |
872
+ | 1.6381 | 42200 | 0.0 | - |
873
+ | 1.6459 | 42400 | 0.0 | - |
874
+ | 1.6536 | 42600 | 0.0 | - |
875
+ | 1.6614 | 42800 | 0.0 | - |
876
+ | 1.6691 | 43000 | 0.0 | - |
877
+ | 1.6769 | 43200 | 0.0 | - |
878
+ | 1.6847 | 43400 | 0.0 | - |
879
+ | 1.6924 | 43600 | 0.0 | - |
880
+ | 1.7002 | 43800 | 0.0 | - |
881
+ | 1.7080 | 44000 | 0.0 | - |
882
+ | 1.7157 | 44200 | 0.0 | - |
883
+ | 1.7235 | 44400 | 0.0 | - |
884
+ | 1.7313 | 44600 | 0.0 | - |
885
+ | 1.7390 | 44800 | 0.0 | - |
886
+ | 1.7468 | 45000 | 0.0 | - |
887
+ | 1.7545 | 45200 | 0.0 | - |
888
+ | 1.7623 | 45400 | 0.0 | - |
889
+ | 1.7701 | 45600 | 0.0 | - |
890
+ | 1.7778 | 45800 | 0.0 | - |
891
+ | 1.7856 | 46000 | 0.0 | - |
892
+ | 1.7934 | 46200 | 0.0 | - |
893
+ | 1.8011 | 46400 | 0.0 | - |
894
+ | 1.8089 | 46600 | 0.0 | - |
895
+ | 1.8167 | 46800 | 0.0 | - |
896
+ | 1.8244 | 47000 | 0.0 | - |
897
+ | 1.8322 | 47200 | 0.0 | - |
898
+ | 1.8399 | 47400 | 0.0 | - |
899
+ | 1.8477 | 47600 | 0.0 | - |
900
+ | 1.8555 | 47800 | 0.0004 | - |
901
+ | 1.8632 | 48000 | 0.0 | - |
902
+ | 1.8710 | 48200 | 0.0 | - |
903
+ | 1.8788 | 48400 | 0.0 | - |
904
+ | 1.8865 | 48600 | 0.0 | - |
905
+ | 1.8943 | 48800 | 0.0 | - |
906
+ | 1.9021 | 49000 | 0.0004 | - |
907
+ | 1.9098 | 49200 | 0.0 | - |
908
+ | 1.9176 | 49400 | 0.0 | - |
909
+ | 1.9253 | 49600 | 0.0004 | - |
910
+ | 1.9331 | 49800 | 0.0 | - |
911
+ | 1.9409 | 50000 | 0.0 | - |
912
+ | 1.9486 | 50200 | 0.0 | - |
913
+ | 1.9564 | 50400 | 0.0 | - |
914
+ | 1.9642 | 50600 | 0.0004 | - |
915
+ | 1.9719 | 50800 | 0.0 | - |
916
+ | 1.9797 | 51000 | 0.0 | - |
917
+ | 1.9875 | 51200 | 0.0 | - |
918
+ | 1.9952 | 51400 | 0.0004 | - |
919
+ | 2.0 | 51524 | - | 0.0001 |
920
+ | 2.0030 | 51600 | 0.0 | - |
921
+ | 2.0107 | 51800 | 0.0 | - |
922
+ | 2.0185 | 52000 | 0.0 | - |
923
+ | 2.0262 | 52200 | 0.0 | - |
924
+ | 2.0340 | 52400 | 0.0004 | - |
925
+ | 2.0418 | 52600 | 0.0004 | - |
926
+ | 2.0495 | 52800 | 0.0 | - |
927
+ | 2.0573 | 53000 | 0.0008 | - |
928
+ | 2.0651 | 53200 | 0.0 | - |
929
+ | 2.0728 | 53400 | 0.0 | - |
930
+ | 2.0806 | 53600 | 0.0 | - |
931
+ | 2.0883 | 53800 | 0.0 | - |
932
+ | 2.0961 | 54000 | 0.0 | - |
933
+ | 2.1039 | 54200 | 0.0 | - |
934
+ | 2.1116 | 54400 | 0.0 | - |
935
+ | 2.1194 | 54600 | 0.0 | - |
936
+ | 2.1272 | 54800 | 0.0 | - |
937
+ | 2.1349 | 55000 | 0.0 | - |
938
+ | 2.1427 | 55200 | 0.0 | - |
939
+ | 2.1505 | 55400 | 0.0 | - |
940
+ | 2.1582 | 55600 | 0.0 | - |
941
+ | 2.1660 | 55800 | 0.0 | - |
942
+ | 2.1737 | 56000 | 0.0 | - |
943
+ | 2.1815 | 56200 | 0.0 | - |
944
+ | 2.1893 | 56400 | 0.0 | - |
945
+ | 2.1970 | 56600 | 0.0 | - |
946
+ | 2.2048 | 56800 | 0.0 | - |
947
+ | 2.2126 | 57000 | 0.0 | - |
948
+ | 2.2203 | 57200 | 0.0 | - |
949
+ | 2.2281 | 57400 | 0.0 | - |
950
+ | 2.2359 | 57600 | 0.0 | - |
951
+ | 2.2436 | 57800 | 0.0 | - |
952
+ | 2.2514 | 58000 | 0.0004 | - |
953
+ | 2.2591 | 58200 | 0.0 | - |
954
+ | 2.2669 | 58400 | 0.0004 | - |
955
+ | 2.2747 | 58600 | 0.0 | - |
956
+ | 2.2824 | 58800 | 0.0 | - |
957
+ | 2.2902 | 59000 | 0.0 | - |
958
+ | 2.2980 | 59200 | 0.0 | - |
959
+ | 2.3057 | 59400 | 0.0 | - |
960
+ | 2.3135 | 59600 | 0.0 | - |
961
+ | 2.3213 | 59800 | 0.0004 | - |
962
+ | 2.3290 | 60000 | 0.0 | - |
963
+ | 2.3368 | 60200 | 0.0004 | - |
964
+ | 2.3445 | 60400 | 0.0 | - |
965
+ | 2.3523 | 60600 | 0.0 | - |
966
+ | 2.3601 | 60800 | 0.0 | - |
967
+ | 2.3678 | 61000 | 0.0 | - |
968
+ | 2.3756 | 61200 | 0.0 | - |
969
+ | 2.3834 | 61400 | 0.0 | - |
970
+ | 2.3911 | 61600 | 0.0 | - |
971
+ | 2.3989 | 61800 | 0.0 | - |
972
+ | 2.4067 | 62000 | 0.0005 | - |
973
+ | 2.4144 | 62200 | 0.0 | - |
974
+ | 2.4222 | 62400 | 0.0 | - |
975
+ | 2.4299 | 62600 | 0.0 | - |
976
+ | 2.4377 | 62800 | 0.0 | - |
977
+ | 2.4455 | 63000 | 0.0 | - |
978
+ | 2.4532 | 63200 | 0.0 | - |
979
+ | 2.4610 | 63400 | 0.0 | - |
980
+ | 2.4688 | 63600 | 0.0 | - |
981
+ | 2.4765 | 63800 | 0.0 | - |
982
+ | 2.4843 | 64000 | 0.0 | - |
983
+ | 2.4921 | 64200 | 0.0 | - |
984
+ | 2.4998 | 64400 | 0.0 | - |
985
+ | 2.5076 | 64600 | 0.0 | - |
986
+ | 2.5153 | 64800 | 0.0 | - |
987
+ | 2.5231 | 65000 | 0.0 | - |
988
+ | 2.5309 | 65200 | 0.0 | - |
989
+ | 2.5386 | 65400 | 0.0 | - |
990
+ | 2.5464 | 65600 | 0.0004 | - |
991
+ | 2.5542 | 65800 | 0.0 | - |
992
+ | 2.5619 | 66000 | 0.0 | - |
993
+ | 2.5697 | 66200 | 0.0 | - |
994
+ | 2.5775 | 66400 | 0.0 | - |
995
+ | 2.5852 | 66600 | 0.0 | - |
996
+ | 2.5930 | 66800 | 0.0 | - |
997
+ | 2.6007 | 67000 | 0.0 | - |
998
+ | 2.6085 | 67200 | 0.0 | - |
999
+ | 2.6163 | 67400 | 0.0 | - |
1000
+ | 2.6240 | 67600 | 0.0 | - |
1001
+ | 2.6318 | 67800 | 0.0 | - |
1002
+ | 2.6396 | 68000 | 0.0 | - |
1003
+ | 2.6473 | 68200 | 0.0 | - |
1004
+ | 2.6551 | 68400 | 0.0 | - |
1005
+ | 2.6629 | 68600 | 0.0 | - |
1006
+ | 2.6706 | 68800 | 0.0004 | - |
1007
+ | 2.6784 | 69000 | 0.0 | - |
1008
+ | 2.6861 | 69200 | 0.0 | - |
1009
+ | 2.6939 | 69400 | 0.0 | - |
1010
+ | 2.7017 | 69600 | 0.0004 | - |
1011
+ | 2.7094 | 69800 | 0.0004 | - |
1012
+ | 2.7172 | 70000 | 0.0 | - |
1013
+ | 2.7250 | 70200 | 0.0 | - |
1014
+ | 2.7327 | 70400 | 0.0 | - |
1015
+ | 2.7405 | 70600 | 0.0 | - |
1016
+ | 2.7483 | 70800 | 0.0 | - |
1017
+ | 2.7560 | 71000 | 0.0004 | - |
1018
+ | 2.7638 | 71200 | 0.0 | - |
1019
+ | 2.7715 | 71400 | 0.0 | - |
1020
+ | 2.7793 | 71600 | 0.0 | - |
1021
+ | 2.7871 | 71800 | 0.0 | - |
1022
+ | 2.7948 | 72000 | 0.0 | - |
1023
+ | 2.8026 | 72200 | 0.0 | - |
1024
+ | 2.8104 | 72400 | 0.0 | - |
1025
+ | 2.8181 | 72600 | 0.0 | - |
1026
+ | 2.8259 | 72800 | 0.0 | - |
1027
+ | 2.8337 | 73000 | 0.0004 | - |
1028
+ | 2.8414 | 73200 | 0.0 | - |
1029
+ | 2.8492 | 73400 | 0.0 | - |
1030
+ | 2.8569 | 73600 | 0.0 | - |
1031
+ | 2.8647 | 73800 | 0.0004 | - |
1032
+ | 2.8725 | 74000 | 0.0 | - |
1033
+ | 2.8802 | 74200 | 0.0 | - |
1034
+ | 2.8880 | 74400 | 0.0 | - |
1035
+ | 2.8958 | 74600 | 0.0 | - |
1036
+ | 2.9035 | 74800 | 0.0 | - |
1037
+ | 2.9113 | 75000 | 0.0 | - |
1038
+ | 2.9191 | 75200 | 0.0 | - |
1039
+ | 2.9268 | 75400 | 0.0004 | - |
1040
+ | 2.9346 | 75600 | 0.0 | - |
1041
+ | 2.9423 | 75800 | 0.0 | - |
1042
+ | 2.9501 | 76000 | 0.0 | - |
1043
+ | 2.9579 | 76200 | 0.0 | - |
1044
+ | 2.9656 | 76400 | 0.0 | - |
1045
+ | 2.9734 | 76600 | 0.0004 | - |
1046
+ | 2.9812 | 76800 | 0.0 | - |
1047
+ | 2.9889 | 77000 | 0.0 | - |
1048
+ | 2.9967 | 77200 | 0.0 | - |
1049
+ | 3.0 | 77286 | - | 0.0000 |
1050
+
1051
+ </details>
1052
+
1053
+ ### Framework Versions
1054
+ - Python: 3.11.11
1055
+ - Sentence Transformers: 3.3.1
1056
+ - Transformers: 4.48.0
1057
+ - PyTorch: 2.5.1+cu121
1058
+ - Accelerate: 1.2.1
1059
+ - Datasets: 3.2.0
1060
+ - Tokenizers: 0.21.0
1061
+
1062
+ ## Citation
1063
+
1064
+ ### BibTeX
1065
+
1066
+ #### Sentence Transformers
1067
+ ```bibtex
1068
+ @inproceedings{reimers-2019-sentence-bert,
1069
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1070
+ author = "Reimers, Nils and Gurevych, Iryna",
1071
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1072
+ month = "11",
1073
+ year = "2019",
1074
+ publisher = "Association for Computational Linguistics",
1075
+ url = "https://arxiv.org/abs/1908.10084",
1076
+ }
1077
+ ```
1078
+
1079
+ #### MultipleNegativesRankingLoss
1080
+ ```bibtex
1081
+ @misc{henderson2017efficient,
1082
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
1083
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
1084
+ year={2017},
1085
+ eprint={1705.00652},
1086
+ archivePrefix={arXiv},
1087
+ primaryClass={cs.CL}
1088
+ }
1089
+ ```
1090
+
1091
+ <!--
1092
+ ## Glossary
1093
+
1094
+ *Clearly define terms in order to be accessible across audiences.*
1095
+ -->
1096
+
1097
+ <!--
1098
+ ## Model Card Authors
1099
+
1100
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1101
+ -->
1102
+
1103
+ <!--
1104
+ ## Model Card Contact
1105
+
1106
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1107
+ -->
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./modernBERT-python-code-retrieval",
3
+ "architectures": [
4
+ "ModernBertModel"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 50281,
9
+ "classifier_activation": "gelu",
10
+ "classifier_bias": false,
11
+ "classifier_dropout": 0.0,
12
+ "classifier_pooling": "mean",
13
+ "cls_token_id": 50281,
14
+ "decoder_bias": true,
15
+ "deterministic_flash_attn": false,
16
+ "embedding_dropout": 0.0,
17
+ "eos_token_id": 50282,
18
+ "global_attn_every_n_layers": 3,
19
+ "global_rope_theta": 160000.0,
20
+ "gradient_checkpointing": false,
21
+ "hidden_activation": "gelu",
22
+ "hidden_size": 768,
23
+ "initializer_cutoff_factor": 2.0,
24
+ "initializer_range": 0.02,
25
+ "intermediate_size": 1152,
26
+ "layer_norm_eps": 1e-05,
27
+ "local_attention": 128,
28
+ "local_rope_theta": 10000.0,
29
+ "max_position_embeddings": 8192,
30
+ "mlp_bias": false,
31
+ "mlp_dropout": 0.0,
32
+ "model_type": "modernbert",
33
+ "norm_bias": false,
34
+ "norm_eps": 1e-05,
35
+ "num_attention_heads": 12,
36
+ "num_hidden_layers": 22,
37
+ "pad_token_id": 50283,
38
+ "position_embedding_type": "absolute",
39
+ "reference_compile": true,
40
+ "repad_logits_with_grad": false,
41
+ "sep_token_id": 50282,
42
+ "sparse_pred_ignore_index": -100,
43
+ "sparse_prediction": false,
44
+ "torch_dtype": "float32",
45
+ "transformers_version": "4.48.1",
46
+ "vocab_size": 50368
47
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.48.1",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8763110e75db040058b130b75e405d154741ee7768e42f001b0126d13695c802
3
+ size 596070136
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 4096,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": true,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,952 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "|||IP_ADDRESS|||",
5
+ "lstrip": false,
6
+ "normalized": true,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": false
10
+ },
11
+ "1": {
12
+ "content": "<|padding|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "50254": {
20
+ "content": " ",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": false
26
+ },
27
+ "50255": {
28
+ "content": " ",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": false
34
+ },
35
+ "50256": {
36
+ "content": " ",
37
+ "lstrip": false,
38
+ "normalized": true,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": false
42
+ },
43
+ "50257": {
44
+ "content": " ",
45
+ "lstrip": false,
46
+ "normalized": true,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": false
50
+ },
51
+ "50258": {
52
+ "content": " ",
53
+ "lstrip": false,
54
+ "normalized": true,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": false
58
+ },
59
+ "50259": {
60
+ "content": " ",
61
+ "lstrip": false,
62
+ "normalized": true,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": false
66
+ },
67
+ "50260": {
68
+ "content": " ",
69
+ "lstrip": false,
70
+ "normalized": true,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": false
74
+ },
75
+ "50261": {
76
+ "content": " ",
77
+ "lstrip": false,
78
+ "normalized": true,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": false
82
+ },
83
+ "50262": {
84
+ "content": " ",
85
+ "lstrip": false,
86
+ "normalized": true,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": false
90
+ },
91
+ "50263": {
92
+ "content": " ",
93
+ "lstrip": false,
94
+ "normalized": true,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": false
98
+ },
99
+ "50264": {
100
+ "content": " ",
101
+ "lstrip": false,
102
+ "normalized": true,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": false
106
+ },
107
+ "50265": {
108
+ "content": " ",
109
+ "lstrip": false,
110
+ "normalized": true,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": false
114
+ },
115
+ "50266": {
116
+ "content": " ",
117
+ "lstrip": false,
118
+ "normalized": true,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": false
122
+ },
123
+ "50267": {
124
+ "content": " ",
125
+ "lstrip": false,
126
+ "normalized": true,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": false
130
+ },
131
+ "50268": {
132
+ "content": " ",
133
+ "lstrip": false,
134
+ "normalized": true,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": false
138
+ },
139
+ "50269": {
140
+ "content": " ",
141
+ "lstrip": false,
142
+ "normalized": true,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": false
146
+ },
147
+ "50270": {
148
+ "content": " ",
149
+ "lstrip": false,
150
+ "normalized": true,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": false
154
+ },
155
+ "50271": {
156
+ "content": " ",
157
+ "lstrip": false,
158
+ "normalized": true,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": false
162
+ },
163
+ "50272": {
164
+ "content": " ",
165
+ "lstrip": false,
166
+ "normalized": true,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": false
170
+ },
171
+ "50273": {
172
+ "content": " ",
173
+ "lstrip": false,
174
+ "normalized": true,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": false
178
+ },
179
+ "50274": {
180
+ "content": " ",
181
+ "lstrip": false,
182
+ "normalized": true,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": false
186
+ },
187
+ "50275": {
188
+ "content": " ",
189
+ "lstrip": false,
190
+ "normalized": true,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": false
194
+ },
195
+ "50276": {
196
+ "content": " ",
197
+ "lstrip": false,
198
+ "normalized": true,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": false
202
+ },
203
+ "50277": {
204
+ "content": "|||EMAIL_ADDRESS|||",
205
+ "lstrip": false,
206
+ "normalized": true,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": false
210
+ },
211
+ "50278": {
212
+ "content": "|||PHONE_NUMBER|||",
213
+ "lstrip": false,
214
+ "normalized": true,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": false
218
+ },
219
+ "50279": {
220
+ "content": "<|endoftext|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "50280": {
228
+ "content": "[UNK]",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "50281": {
236
+ "content": "[CLS]",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "50282": {
244
+ "content": "[SEP]",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "50283": {
252
+ "content": "[PAD]",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "50284": {
260
+ "content": "[MASK]",
261
+ "lstrip": true,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "50285": {
268
+ "content": "[unused0]",
269
+ "lstrip": false,
270
+ "normalized": true,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": false
274
+ },
275
+ "50286": {
276
+ "content": "[unused1]",
277
+ "lstrip": false,
278
+ "normalized": true,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": false
282
+ },
283
+ "50287": {
284
+ "content": "[unused2]",
285
+ "lstrip": false,
286
+ "normalized": true,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": false
290
+ },
291
+ "50288": {
292
+ "content": "[unused3]",
293
+ "lstrip": false,
294
+ "normalized": true,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": false
298
+ },
299
+ "50289": {
300
+ "content": "[unused4]",
301
+ "lstrip": false,
302
+ "normalized": true,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": false
306
+ },
307
+ "50290": {
308
+ "content": "[unused5]",
309
+ "lstrip": false,
310
+ "normalized": true,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": false
314
+ },
315
+ "50291": {
316
+ "content": "[unused6]",
317
+ "lstrip": false,
318
+ "normalized": true,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": false
322
+ },
323
+ "50292": {
324
+ "content": "[unused7]",
325
+ "lstrip": false,
326
+ "normalized": true,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": false
330
+ },
331
+ "50293": {
332
+ "content": "[unused8]",
333
+ "lstrip": false,
334
+ "normalized": true,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": false
338
+ },
339
+ "50294": {
340
+ "content": "[unused9]",
341
+ "lstrip": false,
342
+ "normalized": true,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": false
346
+ },
347
+ "50295": {
348
+ "content": "[unused10]",
349
+ "lstrip": false,
350
+ "normalized": true,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": false
354
+ },
355
+ "50296": {
356
+ "content": "[unused11]",
357
+ "lstrip": false,
358
+ "normalized": true,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": false
362
+ },
363
+ "50297": {
364
+ "content": "[unused12]",
365
+ "lstrip": false,
366
+ "normalized": true,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": false
370
+ },
371
+ "50298": {
372
+ "content": "[unused13]",
373
+ "lstrip": false,
374
+ "normalized": true,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": false
378
+ },
379
+ "50299": {
380
+ "content": "[unused14]",
381
+ "lstrip": false,
382
+ "normalized": true,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": false
386
+ },
387
+ "50300": {
388
+ "content": "[unused15]",
389
+ "lstrip": false,
390
+ "normalized": true,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": false
394
+ },
395
+ "50301": {
396
+ "content": "[unused16]",
397
+ "lstrip": false,
398
+ "normalized": true,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": false
402
+ },
403
+ "50302": {
404
+ "content": "[unused17]",
405
+ "lstrip": false,
406
+ "normalized": true,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": false
410
+ },
411
+ "50303": {
412
+ "content": "[unused18]",
413
+ "lstrip": false,
414
+ "normalized": true,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": false
418
+ },
419
+ "50304": {
420
+ "content": "[unused19]",
421
+ "lstrip": false,
422
+ "normalized": true,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": false
426
+ },
427
+ "50305": {
428
+ "content": "[unused20]",
429
+ "lstrip": false,
430
+ "normalized": true,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": false
434
+ },
435
+ "50306": {
436
+ "content": "[unused21]",
437
+ "lstrip": false,
438
+ "normalized": true,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": false
442
+ },
443
+ "50307": {
444
+ "content": "[unused22]",
445
+ "lstrip": false,
446
+ "normalized": true,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": false
450
+ },
451
+ "50308": {
452
+ "content": "[unused23]",
453
+ "lstrip": false,
454
+ "normalized": true,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": false
458
+ },
459
+ "50309": {
460
+ "content": "[unused24]",
461
+ "lstrip": false,
462
+ "normalized": true,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": false
466
+ },
467
+ "50310": {
468
+ "content": "[unused25]",
469
+ "lstrip": false,
470
+ "normalized": true,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": false
474
+ },
475
+ "50311": {
476
+ "content": "[unused26]",
477
+ "lstrip": false,
478
+ "normalized": true,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": false
482
+ },
483
+ "50312": {
484
+ "content": "[unused27]",
485
+ "lstrip": false,
486
+ "normalized": true,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": false
490
+ },
491
+ "50313": {
492
+ "content": "[unused28]",
493
+ "lstrip": false,
494
+ "normalized": true,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": false
498
+ },
499
+ "50314": {
500
+ "content": "[unused29]",
501
+ "lstrip": false,
502
+ "normalized": true,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": false
506
+ },
507
+ "50315": {
508
+ "content": "[unused30]",
509
+ "lstrip": false,
510
+ "normalized": true,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": false
514
+ },
515
+ "50316": {
516
+ "content": "[unused31]",
517
+ "lstrip": false,
518
+ "normalized": true,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": false
522
+ },
523
+ "50317": {
524
+ "content": "[unused32]",
525
+ "lstrip": false,
526
+ "normalized": true,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": false
530
+ },
531
+ "50318": {
532
+ "content": "[unused33]",
533
+ "lstrip": false,
534
+ "normalized": true,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": false
538
+ },
539
+ "50319": {
540
+ "content": "[unused34]",
541
+ "lstrip": false,
542
+ "normalized": true,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": false
546
+ },
547
+ "50320": {
548
+ "content": "[unused35]",
549
+ "lstrip": false,
550
+ "normalized": true,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": false
554
+ },
555
+ "50321": {
556
+ "content": "[unused36]",
557
+ "lstrip": false,
558
+ "normalized": true,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": false
562
+ },
563
+ "50322": {
564
+ "content": "[unused37]",
565
+ "lstrip": false,
566
+ "normalized": true,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": false
570
+ },
571
+ "50323": {
572
+ "content": "[unused38]",
573
+ "lstrip": false,
574
+ "normalized": true,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": false
578
+ },
579
+ "50324": {
580
+ "content": "[unused39]",
581
+ "lstrip": false,
582
+ "normalized": true,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": false
586
+ },
587
+ "50325": {
588
+ "content": "[unused40]",
589
+ "lstrip": false,
590
+ "normalized": true,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": false
594
+ },
595
+ "50326": {
596
+ "content": "[unused41]",
597
+ "lstrip": false,
598
+ "normalized": true,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": false
602
+ },
603
+ "50327": {
604
+ "content": "[unused42]",
605
+ "lstrip": false,
606
+ "normalized": true,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": false
610
+ },
611
+ "50328": {
612
+ "content": "[unused43]",
613
+ "lstrip": false,
614
+ "normalized": true,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": false
618
+ },
619
+ "50329": {
620
+ "content": "[unused44]",
621
+ "lstrip": false,
622
+ "normalized": true,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": false
626
+ },
627
+ "50330": {
628
+ "content": "[unused45]",
629
+ "lstrip": false,
630
+ "normalized": true,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": false
634
+ },
635
+ "50331": {
636
+ "content": "[unused46]",
637
+ "lstrip": false,
638
+ "normalized": true,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": false
642
+ },
643
+ "50332": {
644
+ "content": "[unused47]",
645
+ "lstrip": false,
646
+ "normalized": true,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": false
650
+ },
651
+ "50333": {
652
+ "content": "[unused48]",
653
+ "lstrip": false,
654
+ "normalized": true,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": false
658
+ },
659
+ "50334": {
660
+ "content": "[unused49]",
661
+ "lstrip": false,
662
+ "normalized": true,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": false
666
+ },
667
+ "50335": {
668
+ "content": "[unused50]",
669
+ "lstrip": false,
670
+ "normalized": true,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": false
674
+ },
675
+ "50336": {
676
+ "content": "[unused51]",
677
+ "lstrip": false,
678
+ "normalized": true,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": false
682
+ },
683
+ "50337": {
684
+ "content": "[unused52]",
685
+ "lstrip": false,
686
+ "normalized": true,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": false
690
+ },
691
+ "50338": {
692
+ "content": "[unused53]",
693
+ "lstrip": false,
694
+ "normalized": true,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": false
698
+ },
699
+ "50339": {
700
+ "content": "[unused54]",
701
+ "lstrip": false,
702
+ "normalized": true,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": false
706
+ },
707
+ "50340": {
708
+ "content": "[unused55]",
709
+ "lstrip": false,
710
+ "normalized": true,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": false
714
+ },
715
+ "50341": {
716
+ "content": "[unused56]",
717
+ "lstrip": false,
718
+ "normalized": true,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": false
722
+ },
723
+ "50342": {
724
+ "content": "[unused57]",
725
+ "lstrip": false,
726
+ "normalized": true,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": false
730
+ },
731
+ "50343": {
732
+ "content": "[unused58]",
733
+ "lstrip": false,
734
+ "normalized": true,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": false
738
+ },
739
+ "50344": {
740
+ "content": "[unused59]",
741
+ "lstrip": false,
742
+ "normalized": true,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": false
746
+ },
747
+ "50345": {
748
+ "content": "[unused60]",
749
+ "lstrip": false,
750
+ "normalized": true,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": false
754
+ },
755
+ "50346": {
756
+ "content": "[unused61]",
757
+ "lstrip": false,
758
+ "normalized": true,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": false
762
+ },
763
+ "50347": {
764
+ "content": "[unused62]",
765
+ "lstrip": false,
766
+ "normalized": true,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": false
770
+ },
771
+ "50348": {
772
+ "content": "[unused63]",
773
+ "lstrip": false,
774
+ "normalized": true,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": false
778
+ },
779
+ "50349": {
780
+ "content": "[unused64]",
781
+ "lstrip": false,
782
+ "normalized": true,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": false
786
+ },
787
+ "50350": {
788
+ "content": "[unused65]",
789
+ "lstrip": false,
790
+ "normalized": true,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": false
794
+ },
795
+ "50351": {
796
+ "content": "[unused66]",
797
+ "lstrip": false,
798
+ "normalized": true,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": false
802
+ },
803
+ "50352": {
804
+ "content": "[unused67]",
805
+ "lstrip": false,
806
+ "normalized": true,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": false
810
+ },
811
+ "50353": {
812
+ "content": "[unused68]",
813
+ "lstrip": false,
814
+ "normalized": true,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": false
818
+ },
819
+ "50354": {
820
+ "content": "[unused69]",
821
+ "lstrip": false,
822
+ "normalized": true,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": false
826
+ },
827
+ "50355": {
828
+ "content": "[unused70]",
829
+ "lstrip": false,
830
+ "normalized": true,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": false
834
+ },
835
+ "50356": {
836
+ "content": "[unused71]",
837
+ "lstrip": false,
838
+ "normalized": true,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": false
842
+ },
843
+ "50357": {
844
+ "content": "[unused72]",
845
+ "lstrip": false,
846
+ "normalized": true,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": false
850
+ },
851
+ "50358": {
852
+ "content": "[unused73]",
853
+ "lstrip": false,
854
+ "normalized": true,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": false
858
+ },
859
+ "50359": {
860
+ "content": "[unused74]",
861
+ "lstrip": false,
862
+ "normalized": true,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": false
866
+ },
867
+ "50360": {
868
+ "content": "[unused75]",
869
+ "lstrip": false,
870
+ "normalized": true,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": false
874
+ },
875
+ "50361": {
876
+ "content": "[unused76]",
877
+ "lstrip": false,
878
+ "normalized": true,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": false
882
+ },
883
+ "50362": {
884
+ "content": "[unused77]",
885
+ "lstrip": false,
886
+ "normalized": true,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": false
890
+ },
891
+ "50363": {
892
+ "content": "[unused78]",
893
+ "lstrip": false,
894
+ "normalized": true,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": false
898
+ },
899
+ "50364": {
900
+ "content": "[unused79]",
901
+ "lstrip": false,
902
+ "normalized": true,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": false
906
+ },
907
+ "50365": {
908
+ "content": "[unused80]",
909
+ "lstrip": false,
910
+ "normalized": true,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": false
914
+ },
915
+ "50366": {
916
+ "content": "[unused81]",
917
+ "lstrip": false,
918
+ "normalized": true,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": false
922
+ },
923
+ "50367": {
924
+ "content": "[unused82]",
925
+ "lstrip": false,
926
+ "normalized": true,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": false
930
+ }
931
+ },
932
+ "clean_up_tokenization_spaces": true,
933
+ "cls_token": "[CLS]",
934
+ "extra_special_tokens": {},
935
+ "mask_token": "[MASK]",
936
+ "max_length": 4096,
937
+ "model_input_names": [
938
+ "input_ids",
939
+ "attention_mask"
940
+ ],
941
+ "model_max_length": 4096,
942
+ "pad_to_multiple_of": null,
943
+ "pad_token": "[PAD]",
944
+ "pad_token_type_id": 0,
945
+ "padding_side": "right",
946
+ "sep_token": "[SEP]",
947
+ "stride": 0,
948
+ "tokenizer_class": "PreTrainedTokenizerFast",
949
+ "truncation_side": "right",
950
+ "truncation_strategy": "longest_first",
951
+ "unk_token": "[UNK]"
952
+ }