Whisper Tiny Taiwanese (exp_cc_0.5_embed)

This model is a fine-tuned version of openai/whisper-tiny on the TAT ASR Aligned dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3468
  • Cer: 40.8566

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1362
  • training_steps: 13620
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
0.4029 0.9985 681 1.0622 40.3475
0.3838 1.9971 1362 1.2521 45.3507
0.2719 2.9956 2043 1.2355 44.4585
0.1927 3.9941 2724 1.2278 44.0645
0.1391 4.9927 3405 1.2620 44.1542
0.0996 5.9912 4086 1.3637 43.2260
0.0691 6.9897 4767 1.4641 44.2366
0.053 7.9883 5448 1.4679 43.7573
0.0401 8.9868 6129 1.5647 42.3763
0.0331 9.9853 6810 1.6093 42.9464
0.0243 10.9839 7491 1.6949 43.3876
0.0186 11.9824 8172 1.7528 42.7885
0.0134 12.9809 8853 1.8851 43.8099
0.0093 13.9795 9534 1.9080 42.4202
0.0069 14.9780 10215 1.9732 42.1247
0.0039 15.9765 10896 2.1342 41.9910
0.0018 16.9751 11577 2.1268 42.0237
0.0005 17.9736 12258 2.2460 40.5185
0.0002 18.9721 12939 2.3131 40.9274
0.0001 19.9707 13620 2.3468 40.8566

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.0.0.post304
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
7
Safetensors
Model size
37.8M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for jethrowang/whisper-tiny_tat-esc_exp_cc_0.5_embed

Finetuned
(1498)
this model