jacob-danner's picture
feat: train with sorted label to make training behavior reproducible at evaluation time
ee6d271 verified
metadata
library_name: transformers
license: mit
base_model: openai-gpt
tags:
  - generated_from_trainer
model-index:
  - name: gpt_1_sequence_classification_finetune
    results: []

gpt_1_sequence_classification_finetune

This model is a fine-tuned version of openai-gpt on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3295

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.38312346311055e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss
1.6661 1.0 12 1.4575
1.3696 2.0 24 1.0023
0.6977 3.0 36 0.5564
0.3751 4.0 48 0.4573
0.2528 5.0 60 0.3803
0.1503 6.0 72 0.2699
0.0863 7.0 84 0.2888
0.0547 8.0 96 0.3295

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0
  • Datasets 3.4.0
  • Tokenizers 0.21.1