segformer-b1-finetuned-segments-chargers-full-v2.1

This model is a fine-tuned version of nvidia/mit-b2 on the dskong07/chargers-full-v0.1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3562
  • Mean Iou: 0.7932
  • Mean Accuracy: 0.8741
  • Overall Accuracy: 0.9202
  • Accuracy Unlabeled: nan
  • Accuracy Screen: 0.8965
  • Accuracy Body: 0.9162
  • Accuracy Cable: 0.7137
  • Accuracy Plug: 0.9024
  • Accuracy Void-background: 0.9416
  • Iou Unlabeled: nan
  • Iou Screen: 0.7980
  • Iou Body: 0.7952
  • Iou Cable: 0.6210
  • Iou Plug: 0.8498
  • Iou Void-background: 0.9017

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Screen Accuracy Body Accuracy Cable Accuracy Plug Accuracy Void-background Iou Unlabeled Iou Screen Iou Body Iou Cable Iou Plug Iou Void-background
0.791 2.2222 20 0.9137 0.6056 0.7582 0.8259 nan 0.7897 0.9011 0.3986 0.8781 0.8237 nan 0.5894 0.6325 0.3127 0.7018 0.7917
0.5745 4.4444 40 0.5314 0.6800 0.7953 0.8728 nan 0.8035 0.8500 0.5621 0.8461 0.9150 nan 0.6561 0.7012 0.4305 0.7589 0.8532
0.299 6.6667 60 0.5239 0.7206 0.8270 0.8901 nan 0.8754 0.8941 0.5805 0.8698 0.9153 nan 0.7133 0.7331 0.5038 0.7821 0.8707
0.2347 8.8889 80 0.4256 0.7400 0.8361 0.8968 nan 0.8764 0.8594 0.6402 0.8687 0.9361 nan 0.7360 0.7410 0.5458 0.8023 0.8750
0.2687 11.1111 100 0.4235 0.7527 0.8554 0.9026 nan 0.9298 0.8578 0.6598 0.8930 0.9367 nan 0.7357 0.7511 0.5652 0.8284 0.8833
0.1953 13.3333 120 0.4096 0.7602 0.8623 0.9033 nan 0.8765 0.8807 0.7199 0.9064 0.9280 nan 0.7666 0.7590 0.5933 0.8012 0.8808
0.1998 15.5556 140 0.3897 0.7644 0.8591 0.9076 nan 0.8287 0.9400 0.6962 0.9132 0.9173 nan 0.7548 0.7751 0.5922 0.8125 0.8874
0.1636 17.7778 160 0.3818 0.7810 0.8675 0.9140 nan 0.8802 0.9041 0.7048 0.9117 0.9368 nan 0.7889 0.7802 0.6022 0.8398 0.8939
0.1554 20.0 180 0.3784 0.7718 0.8826 0.9119 nan 0.9614 0.8719 0.7156 0.9292 0.9348 nan 0.7299 0.7721 0.6117 0.8482 0.8972
0.1187 22.2222 200 0.3712 0.7851 0.8735 0.9159 nan 0.8778 0.9223 0.7164 0.9201 0.9310 nan 0.7982 0.7885 0.6086 0.8347 0.8957
0.1217 24.4444 220 0.3630 0.7898 0.8841 0.9174 nan 0.9005 0.9160 0.7352 0.9387 0.9301 nan 0.8053 0.7934 0.6209 0.8326 0.8969
0.092 26.6667 240 0.3711 0.7882 0.8801 0.9184 nan 0.9210 0.9023 0.7309 0.9067 0.9398 nan 0.7766 0.7899 0.6158 0.8574 0.9013
0.0906 28.8889 260 0.3732 0.7907 0.8798 0.9189 nan 0.8996 0.9158 0.7235 0.9247 0.9354 nan 0.7915 0.7934 0.6219 0.8466 0.9002
0.1034 31.1111 280 0.3899 0.7924 0.8801 0.9198 nan 0.9053 0.9124 0.7297 0.9141 0.9389 nan 0.7878 0.7927 0.6203 0.8586 0.9025
0.084 33.3333 300 0.3613 0.7925 0.8792 0.9200 nan 0.9141 0.9073 0.7117 0.9221 0.9406 nan 0.7925 0.7934 0.6163 0.8584 0.9020
0.1075 35.5556 320 0.3712 0.7901 0.8808 0.9193 nan 0.9249 0.9068 0.7126 0.9216 0.9384 nan 0.7866 0.7938 0.6175 0.8513 0.9013
0.1099 37.7778 340 0.4036 0.7934 0.8823 0.9203 nan 0.9055 0.9211 0.7249 0.9251 0.9350 nan 0.7972 0.7982 0.6235 0.8465 0.9018
0.2037 40.0 360 0.3782 0.7894 0.8719 0.9188 nan 0.8953 0.9155 0.6951 0.9145 0.9393 nan 0.7988 0.7936 0.6117 0.8433 0.8997
0.103 42.2222 380 0.3521 0.7921 0.8788 0.9199 nan 0.8977 0.9211 0.7155 0.9234 0.9361 nan 0.7992 0.7983 0.6195 0.8428 0.9010
0.0741 44.4444 400 0.3763 0.7922 0.8818 0.9199 nan 0.9081 0.9241 0.7135 0.9304 0.9330 nan 0.7982 0.7992 0.6216 0.8414 0.9008
0.0831 46.6667 420 0.3501 0.7921 0.8748 0.9199 nan 0.8859 0.9229 0.7177 0.9094 0.9382 nan 0.7934 0.7957 0.6227 0.8467 0.9018
0.079 48.8889 440 0.3562 0.7932 0.8741 0.9202 nan 0.8965 0.9162 0.7137 0.9024 0.9416 nan 0.7980 0.7952 0.6210 0.8498 0.9017

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
2
Safetensors
Model size
27.4M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for irvingz/segformer-b2-finetuned-segments-chargers-full-v2.1

Base model

nvidia/mit-b2
Finetuned
(12)
this model