|
import json
|
|
import random
|
|
|
|
import pandas as pd
|
|
import torch
|
|
import os
|
|
|
|
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
|
|
from sentence_transformers import SentenceTransformer
|
|
import tqdm
|
|
import numpy as np
|
|
import faiss
|
|
from sklearn.metrics import ndcg_score
|
|
from os.path import join
|
|
from sklearn.preprocessing import normalize
|
|
from transformers import AutoTokenizer, AutoModel
|
|
|
|
faiss.omp_set_num_threads(16)
|
|
|
|
|
|
def find_topk_by_vecs(source_vecs: np.ndarray, target_vecs: np.ndarray, topk: int):
|
|
if topk > len(target_vecs):
|
|
topk = len(target_vecs)
|
|
faiss_index = faiss.IndexFlatIP(target_vecs.shape[1])
|
|
faiss_index.add(target_vecs)
|
|
|
|
res_distance, res_index = faiss_index.search(source_vecs, topk)
|
|
return res_index, res_distance
|
|
|
|
|
|
def get_loco_path_info(q_dir, d_dir):
|
|
names = []
|
|
for name in sorted(os.listdir(q_dir)):
|
|
if name.endswith(".jsonl"):
|
|
names.append(name)
|
|
for name in os.listdir(d_dir):
|
|
if name.endswith(".jsonl"):
|
|
assert name in names
|
|
infos = []
|
|
for name in names:
|
|
infos.append(["LOCO-V1", name, join(q_dir, name), join(d_dir, name)])
|
|
infos.sort(key=lambda x: x[1])
|
|
return infos
|
|
|
|
|
|
def get_loco_data(q_path, d_path):
|
|
passage_list, query2passage_list = [], {}
|
|
|
|
original_doc_id2doc = {}
|
|
|
|
with open(d_path, "r", encoding="utf8") as fr:
|
|
for line in fr:
|
|
item = json.loads(line)
|
|
if item["passage"].strip():
|
|
original_doc_id2doc[item["pid"]] = item["passage"].strip()
|
|
passage_list.append(item["passage"].strip())
|
|
|
|
with open(q_path, "r", encoding="utf8") as fr:
|
|
for line in fr:
|
|
item = json.loads(line)
|
|
if item["query"].strip():
|
|
query2passage_list[item["query"].strip()] = [
|
|
original_doc_id2doc[answer_pid]
|
|
for answer_pid in item["answer_pids"]
|
|
if answer_pid in original_doc_id2doc
|
|
]
|
|
query2passage_list = {k: list(set(v)) for k, v in query2passage_list.items() if list(set(v))}
|
|
passage_list = list(set(passage_list))
|
|
passage2id = {passage: idx for idx, passage in enumerate(passage_list)}
|
|
query2id_list = {k: list(set([passage2id[i] for i in v])) for k, v in query2passage_list.items()}
|
|
query_list = list(query2id_list.keys())
|
|
return query_list, passage_list, query2id_list
|
|
|
|
|
|
def get_ndcg_score(query_list, passage_list, query2passage_id_list, topk=10, error_data_save_path: str = None):
|
|
chunk_id2passage_id = {}
|
|
q_vecs = model.encode(
|
|
sentences=query_list,
|
|
batch_size=batch_size,
|
|
chunk_size=chunk_size,
|
|
chunk_overlap=chunk_overlap,
|
|
max_seq_length=max_seq_length,
|
|
is_q=True,
|
|
)
|
|
p_vecs = model.encode(
|
|
sentences=passage_list,
|
|
batch_size=batch_size,
|
|
chunk_size=chunk_size,
|
|
chunk_overlap=chunk_overlap,
|
|
max_seq_length=max_seq_length,
|
|
is_q=False,
|
|
)
|
|
|
|
query_id_list = [query2passage_id_list[query] for query in query_list]
|
|
max_doc = max((len(id_list) for id_list in query_id_list))
|
|
|
|
labels = np.array([(id_list * max_doc)[:max_doc] for id_list in query_id_list])
|
|
if isinstance(p_vecs, list):
|
|
for idx, vec in enumerate(p_vecs):
|
|
if multi_vec_strategy == "full_text":
|
|
p_vecs[idx] = normalize(np.mean(vec[1:2, :], axis=0, keepdims=True), axis=1)
|
|
elif multi_vec_strategy == "full_text+chunks":
|
|
n_chunk = (vec.shape[0] - 2) // 2
|
|
if n_chunk > 0:
|
|
p_vecs[idx] = np.vstack(
|
|
(
|
|
normalize(np.mean(vec[:2, :], axis=0, keepdims=True), axis=1),
|
|
vec[2:2 + n_chunk, :],
|
|
)
|
|
)
|
|
else:
|
|
p_vecs[idx] = normalize(np.mean(vec[:2, :], axis=0, keepdims=True), axis=1)
|
|
p_vecs = np.vstack(p_vecs)
|
|
|
|
if isinstance(q_vecs, list):
|
|
for idx, vec in enumerate(q_vecs):
|
|
q_vecs[idx] = normalize(np.mean(vec[0:2, :], axis=0, keepdims=True), axis=1)
|
|
q_vecs = np.vstack(q_vecs)
|
|
print("q_vecs.shape and dtype", q_vecs.shape, q_vecs.dtype)
|
|
print("p_vecs.shape and dtype", p_vecs.shape, p_vecs.dtype)
|
|
|
|
|
|
topk_index, topk_scores = find_topk_by_vecs(q_vecs, p_vecs, topk * 100)
|
|
|
|
|
|
|
|
if chunk_id2passage_id:
|
|
new_topk_index, new_topk_scores = [], []
|
|
|
|
for chunk_ids, chunk_scores in tqdm.tqdm(zip(topk_index, topk_scores),
|
|
desc="modify topk_index and topk_scores", disable=True):
|
|
|
|
row_ids, row_scores, passage_id_set = [], [], set()
|
|
for idx, chunk_id in enumerate(chunk_ids):
|
|
passage_id = chunk_id2passage_id[chunk_id]
|
|
if passage_id not in passage_id_set:
|
|
passage_id_set.add(passage_id)
|
|
row_ids.append(passage_id)
|
|
row_scores.append(chunk_scores[idx])
|
|
new_topk_index.append(row_ids[:topk])
|
|
new_topk_scores.append(row_scores[:topk])
|
|
topk_index = np.array(new_topk_index)
|
|
|
|
topk_scores = np.array(new_topk_scores)
|
|
topk_index, topk_scores = topk_index[:, :topk], topk_scores[:, :topk]
|
|
is_match = (topk_index == labels[:, :1])
|
|
for idx in range(1, max_doc):
|
|
|
|
is_match = is_match | (topk_index == labels[:, idx:idx + 1])
|
|
|
|
|
|
print("is_match.shape", is_match.shape)
|
|
|
|
ndcg = ndcg_score(is_match.astype(dtype=np.float32), topk_scores)
|
|
|
|
if error_data_save_path:
|
|
in_top_k = is_match.sum(axis=1).astype(bool)
|
|
err_data = []
|
|
for idx, pred_res in enumerate(in_top_k):
|
|
if not pred_res:
|
|
query = query_list[idx]
|
|
label_doc = passage_list[query2passage_id_list[query][0]]
|
|
pred_doc = passage_list[topk_index[idx][0]]
|
|
err_data.append([query, label_doc, pred_doc])
|
|
pd.DataFrame(err_data, columns=["Query", "Label", "Pred"]).to_excel(error_data_save_path, index=False)
|
|
return float(ndcg)
|
|
|
|
|
|
class ModelWrapper:
|
|
def __init__(self, model_dir, model_type, max_seq_length):
|
|
assert model_type in ["dewey", "sentence_transformer"]
|
|
self.model_type = model_type
|
|
self.tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
|
if model_type == "dewey":
|
|
self.model = AutoModel.from_pretrained(
|
|
model_dir,
|
|
attn_implementation="flash_attention_2",
|
|
trust_remote_code=True,
|
|
).cuda().bfloat16().eval()
|
|
self.model.tokenizer = self.tokenizer
|
|
else:
|
|
self.model = SentenceTransformer(
|
|
model_dir,
|
|
trust_remote_code=True,
|
|
device="cpu",
|
|
model_kwargs={
|
|
"torch_dtype": torch.bfloat16,
|
|
"attn_implementation": "flash_attention_2"
|
|
},
|
|
)
|
|
self.model.max_seq_length = max_seq_length
|
|
if "NV-Embed-v2" in model_dir:
|
|
self.model.tokenizer.padding_side = "right"
|
|
self.pool = self.model.start_multi_process_pool()
|
|
|
|
def encode(
|
|
self,
|
|
sentences,
|
|
batch_size,
|
|
chunk_size,
|
|
chunk_overlap,
|
|
max_seq_length,
|
|
is_q,
|
|
):
|
|
if self.model_type == "dewey":
|
|
if is_q:
|
|
prompt = "<|START_INSTRUCTION|>Answer the question<|END_INSTRUCTION|>"
|
|
else:
|
|
prompt = "<|START_INSTRUCTION|>Candidate document<|END_INSTRUCTION|>"
|
|
return self.model.encode(
|
|
sentences=sentences,
|
|
batch_size=batch_size,
|
|
use_cuda=True,
|
|
show_progress_bar=True,
|
|
chunk_size=chunk_size,
|
|
chunk_overlap=chunk_overlap,
|
|
convert_to_tensor=False,
|
|
max_seq_length=max_seq_length,
|
|
normalize_embeddings=True,
|
|
prompt=prompt,
|
|
fast_chunk=True,
|
|
)[0]
|
|
self.model.max_seq_length = max_seq_length
|
|
prompt = None
|
|
if is_q and (
|
|
"Linq-Embed-Mistral" in model_dir or "e5-mistral-7b-instruct" in model_dir or "SFR-Embedding-Mistral" in model_dir):
|
|
prompt = PROMPT_E5
|
|
if is_q and ("NV-Embed-v2" in model_dir):
|
|
prompt = PROMPT_NV
|
|
if "chunk_alignment" in model_dir or "dewey" in model_dir:
|
|
if is_q:
|
|
prompt = "<|START_INSTRUCTION|>Answer the question<|END_INSTRUCTION|>"
|
|
else:
|
|
prompt = "<|START_INSTRUCTION|>Candidate document<|END_INSTRUCTION|>"
|
|
vecs = self.model.encode_multi_process(
|
|
add_eos(sentences) if "NV-Embed-v2" in model_dir else sentences,
|
|
pool=self.pool,
|
|
show_progress_bar=True,
|
|
batch_size=batch_size,
|
|
normalize_embeddings=True,
|
|
prompt=prompt
|
|
)
|
|
return vecs
|
|
|
|
|
|
def add_eos(input_examples):
|
|
input_examples = [input_example + model.tokenizer.eos_token for input_example in input_examples]
|
|
return input_examples
|
|
|
|
|
|
PROMPT_BGE = "Represent this sentence for searching relevant passages:"
|
|
PROMPT_E5 = "Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: "
|
|
PROMPT_NV = "Instruct: Given a question, retrieve passages that answer the question\nQuery: "
|
|
if __name__ == "__main__":
|
|
chunk_size = -1
|
|
chunk_overlap = 32
|
|
batch_size = 2
|
|
max_seq_length = 8 * 1024
|
|
multi_vec_strategy = "full_text"
|
|
err_data_save_path = None
|
|
topk = 10
|
|
|
|
model_dir = "infgrad/dewey_en_beta"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model_type = "sentence_transformer"
|
|
|
|
|
|
data_info = get_loco_path_info(
|
|
"/home/zd/public_data/LoCoV1-Queries/documents/",
|
|
"/home/zd/public_data/LoCoV1-Documents/documents/",
|
|
)
|
|
|
|
|
|
model = ModelWrapper(model_dir=model_dir, model_type=model_type, max_seq_length=max_seq_length)
|
|
|
|
ndcg_score_list = []
|
|
for item in data_info:
|
|
print("\n\n\n\n" + "=" * 20)
|
|
print(f"evaluate {item[:2]}...")
|
|
query_list, passage_list, query2passage_id_list = get_loco_data(*item[2:])
|
|
print("number of all queries", len(query_list))
|
|
print("number of all passages", len(passage_list))
|
|
ndcg = get_ndcg_score(query_list, passage_list, query2passage_id_list, topk=topk,
|
|
error_data_save_path=err_data_save_path)
|
|
print(f"{ndcg}")
|
|
ndcg_score_list.append(ndcg)
|
|
|
|
for i in data_info:
|
|
print(i[0])
|
|
print("\n\n\n")
|
|
for i in data_info:
|
|
print(i[1].replace(".jsonl", ""))
|
|
print("\n\n\n")
|
|
|
|
print(os.path.basename(model_dir))
|
|
for i in ndcg_score_list:
|
|
print(i)
|
|
|