File size: 12,284 Bytes
d8f227d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import json
import random
import pandas as pd
import torch
import os
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
from sentence_transformers import SentenceTransformer
import tqdm
import numpy as np
import faiss
from sklearn.metrics import ndcg_score
from os.path import join
from sklearn.preprocessing import normalize
from transformers import AutoTokenizer, AutoModel
faiss.omp_set_num_threads(16)
def find_topk_by_vecs(source_vecs: np.ndarray, target_vecs: np.ndarray, topk: int):
if topk > len(target_vecs):
topk = len(target_vecs)
faiss_index = faiss.IndexFlatIP(target_vecs.shape[1])
faiss_index.add(target_vecs)
res_distance, res_index = faiss_index.search(source_vecs, topk)
return res_index, res_distance
def get_loco_path_info(q_dir, d_dir):
names = []
for name in sorted(os.listdir(q_dir)):
if name.endswith(".jsonl"):
names.append(name)
for name in os.listdir(d_dir):
if name.endswith(".jsonl"):
assert name in names
infos = []
for name in names:
infos.append(["LOCO-V1", name, join(q_dir, name), join(d_dir, name)])
infos.sort(key=lambda x: x[1])
return infos
def get_loco_data(q_path, d_path):
passage_list, query2passage_list = [], {}
original_doc_id2doc = {}
with open(d_path, "r", encoding="utf8") as fr:
for line in fr:
item = json.loads(line)
if item["passage"].strip():
original_doc_id2doc[item["pid"]] = item["passage"].strip()
passage_list.append(item["passage"].strip())
with open(q_path, "r", encoding="utf8") as fr:
for line in fr:
item = json.loads(line)
if item["query"].strip():
query2passage_list[item["query"].strip()] = [
original_doc_id2doc[answer_pid]
for answer_pid in item["answer_pids"]
if answer_pid in original_doc_id2doc
]
query2passage_list = {k: list(set(v)) for k, v in query2passage_list.items() if list(set(v))}
passage_list = list(set(passage_list))
passage2id = {passage: idx for idx, passage in enumerate(passage_list)}
query2id_list = {k: list(set([passage2id[i] for i in v])) for k, v in query2passage_list.items()}
query_list = list(query2id_list.keys())
return query_list, passage_list, query2id_list
def get_ndcg_score(query_list, passage_list, query2passage_id_list, topk=10, error_data_save_path: str = None):
chunk_id2passage_id = {}
q_vecs = model.encode(
sentences=query_list,
batch_size=batch_size,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
max_seq_length=max_seq_length,
is_q=True,
)
p_vecs = model.encode(
sentences=passage_list,
batch_size=batch_size,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
max_seq_length=max_seq_length,
is_q=False,
)
# according query2id_list get labels_list
query_id_list = [query2passage_id_list[query] for query in query_list]
max_doc = max((len(id_list) for id_list in query_id_list))
labels = np.array([(id_list * max_doc)[:max_doc] for id_list in query_id_list])
if isinstance(p_vecs, list):
for idx, vec in enumerate(p_vecs):
if multi_vec_strategy == "full_text":
p_vecs[idx] = normalize(np.mean(vec[1:2, :], axis=0, keepdims=True), axis=1)
elif multi_vec_strategy == "full_text+chunks":
n_chunk = (vec.shape[0] - 2) // 2
if n_chunk > 0:
p_vecs[idx] = np.vstack(
(
normalize(np.mean(vec[:2, :], axis=0, keepdims=True), axis=1),
vec[2:2 + n_chunk, :],
)
)
else:
p_vecs[idx] = normalize(np.mean(vec[:2, :], axis=0, keepdims=True), axis=1)
p_vecs = np.vstack(p_vecs)
if isinstance(q_vecs, list):
for idx, vec in enumerate(q_vecs):
q_vecs[idx] = normalize(np.mean(vec[0:2, :], axis=0, keepdims=True), axis=1)
q_vecs = np.vstack(q_vecs)
print("q_vecs.shape and dtype", q_vecs.shape, q_vecs.dtype)
print("p_vecs.shape and dtype", p_vecs.shape, p_vecs.dtype)
# search topk
# we calculate ndcg@10
topk_index, topk_scores = find_topk_by_vecs(q_vecs, p_vecs, topk * 100)
# print("topk_index", topk_index.shape, topk_index)
# print("topk_scores", topk_scores.shape, topk_scores)
### we may use multi vectors, so we should modify topk_index and topk_scores
if chunk_id2passage_id:
new_topk_index, new_topk_scores = [], []
# print("chunk_id2passage_id")
for chunk_ids, chunk_scores in tqdm.tqdm(zip(topk_index, topk_scores),
desc="modify topk_index and topk_scores", disable=True):
# processed by row
row_ids, row_scores, passage_id_set = [], [], set()
for idx, chunk_id in enumerate(chunk_ids):
passage_id = chunk_id2passage_id[chunk_id]
if passage_id not in passage_id_set:
passage_id_set.add(passage_id)
row_ids.append(passage_id)
row_scores.append(chunk_scores[idx])
new_topk_index.append(row_ids[:topk])
new_topk_scores.append(row_scores[:topk])
topk_index = np.array(new_topk_index)
# print("topk_index", topk_index)
topk_scores = np.array(new_topk_scores)
topk_index, topk_scores = topk_index[:, :topk], topk_scores[:, :topk]
is_match = (topk_index == labels[:, :1])
for idx in range(1, max_doc):
# the or operator means that only one positive doc in pred topk, we think it is recalled
is_match = is_match | (topk_index == labels[:, idx:idx + 1])
# compute recall at topk
print("is_match.shape", is_match.shape)
# recall_at_k = is_match.sum(axis=1).astype(bool).mean()
ndcg = ndcg_score(is_match.astype(dtype=np.float32), topk_scores)
if error_data_save_path:
in_top_k = is_match.sum(axis=1).astype(bool)
err_data = []
for idx, pred_res in enumerate(in_top_k):
if not pred_res:
query = query_list[idx]
label_doc = passage_list[query2passage_id_list[query][0]]
pred_doc = passage_list[topk_index[idx][0]]
err_data.append([query, label_doc, pred_doc])
pd.DataFrame(err_data, columns=["Query", "Label", "Pred"]).to_excel(error_data_save_path, index=False)
return float(ndcg)
class ModelWrapper:
def __init__(self, model_dir, model_type, max_seq_length):
assert model_type in ["dewey", "sentence_transformer"]
self.model_type = model_type
self.tokenizer = AutoTokenizer.from_pretrained(model_dir)
if model_type == "dewey":
self.model = AutoModel.from_pretrained(
model_dir,
attn_implementation="flash_attention_2",
trust_remote_code=True,
).cuda().bfloat16().eval()
self.model.tokenizer = self.tokenizer
else:
self.model = SentenceTransformer(
model_dir,
trust_remote_code=True,
device="cpu",
model_kwargs={
"torch_dtype": torch.bfloat16, # fp16
"attn_implementation": "flash_attention_2"
},
)
self.model.max_seq_length = max_seq_length
if "NV-Embed-v2" in model_dir:
self.model.tokenizer.padding_side = "right"
self.pool = self.model.start_multi_process_pool()
def encode(
self,
sentences,
batch_size,
chunk_size,
chunk_overlap,
max_seq_length,
is_q,
):
if self.model_type == "dewey":
if is_q:
prompt = "<|START_INSTRUCTION|>Answer the question<|END_INSTRUCTION|>"
else:
prompt = "<|START_INSTRUCTION|>Candidate document<|END_INSTRUCTION|>"
return self.model.encode(
sentences=sentences,
batch_size=batch_size,
use_cuda=True,
show_progress_bar=True,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
convert_to_tensor=False,
max_seq_length=max_seq_length,
normalize_embeddings=True,
prompt=prompt,
fast_chunk=True,
)[0]
self.model.max_seq_length = max_seq_length
prompt = None
if is_q and (
"Linq-Embed-Mistral" in model_dir or "e5-mistral-7b-instruct" in model_dir or "SFR-Embedding-Mistral" in model_dir):
prompt = PROMPT_E5
if is_q and ("NV-Embed-v2" in model_dir):
prompt = PROMPT_NV
if "chunk_alignment" in model_dir or "dewey" in model_dir:
if is_q:
prompt = "<|START_INSTRUCTION|>Answer the question<|END_INSTRUCTION|>"
else:
prompt = "<|START_INSTRUCTION|>Candidate document<|END_INSTRUCTION|>"
vecs = self.model.encode_multi_process(
add_eos(sentences) if "NV-Embed-v2" in model_dir else sentences,
pool=self.pool,
show_progress_bar=True,
batch_size=batch_size,
normalize_embeddings=True,
prompt=prompt
)
return vecs
def add_eos(input_examples):
input_examples = [input_example + model.tokenizer.eos_token for input_example in input_examples]
return input_examples
PROMPT_BGE = "Represent this sentence for searching relevant passages:"
PROMPT_E5 = "Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: "
PROMPT_NV = "Instruct: Given a question, retrieve passages that answer the question\nQuery: "
if __name__ == "__main__":
chunk_size = -1
chunk_overlap = 32
batch_size = 2
max_seq_length = 8 * 1024
multi_vec_strategy = "full_text" # full_text; full_text+chunks
err_data_save_path = None
topk = 10
model_dir = "infgrad/dewey_en_beta"
# model_dir = "/home/zd/public_models/Linq-Embed-Mistral/"
# model_dir = "/home/zd/public_models/SFR-Embedding-Mistral"
# model_dir = "/home/zd/public_models/e5-mistral-7b-instruct"
# model_dir = "/home/zd/public_models/bge-m3"
# model_dir = "/home/zd/public_models/gte-modernbert-base"
# model_dir = "/home/zd/public_models/NV-Embed-v2"
# sentence_transformer dewey
model_type = "sentence_transformer"
## get data info
# TODO Please download LOCOV1 data first!
data_info = get_loco_path_info(
"/home/zd/public_data/LoCoV1-Queries/documents/",
"/home/zd/public_data/LoCoV1-Documents/documents/",
)
# load model
model = ModelWrapper(model_dir=model_dir, model_type=model_type, max_seq_length=max_seq_length)
# model = zd()
ndcg_score_list = []
for item in data_info:
print("\n\n\n\n" + "=" * 20)
print(f"evaluate {item[:2]}...")
query_list, passage_list, query2passage_id_list = get_loco_data(*item[2:])
print("number of all queries", len(query_list))
print("number of all passages", len(passage_list))
ndcg = get_ndcg_score(query_list, passage_list, query2passage_id_list, topk=topk,
error_data_save_path=err_data_save_path)
print(f"{ndcg}")
ndcg_score_list.append(ndcg)
for i in data_info:
print(i[0])
print("\n\n\n")
for i in data_info:
print(i[1].replace(".jsonl", ""))
print("\n\n\n")
print(os.path.basename(model_dir))
for i in ndcg_score_list:
print(i)
|